scholarly journals How Can Dual-Task Working Memory Retention Limits Be Investigated?

2007 ◽  
Vol 18 (8) ◽  
pp. 686-688 ◽  
Author(s):  
Nelson Cowan ◽  
Candice C. Morey
2019 ◽  
Author(s):  
Stefan Huijser ◽  
Niels Anne Taatgen ◽  
Marieke K. van Vugt

Preparing for the future during ongoing activities is an essential skill. Yet, it is currently unclear to what extent we can prepare for the future in parallel with another task. In two experiments, we investigated how characteristics of a present task influenced whether and when participants prepared for the future, as well as its usefulness. We focused on the influence of concurrent working memory load, assuming that working memory would interfere most strongly with preparation. In both experiments, participants performed a novel sequential dual-task paradigm, in which they could voluntary prepare for a second task while performing a first task. We identified task preparation by means of eye tracking, through detecting when participants switched their gaze from the first to the second task. The results showed that participants prepared productively, as evidenced by faster RTs on the second task, with only a small cost to the present task. The probability of preparation and its productiveness decreased with general increases in present task difficulty. In contrast to our prediction, we found some but no consistent support for influence of concurrent working memory load on preparation. Only for concurrent high working memory load (i.e., two items in memory), we observed strong interference with preparation. We conclude that preparation is affected by present task difficulty, potentially due to decreased opportunities for preparation and changes in multitasking strategy. Furthermore, the interference from holding two items may reflect that concurrent preparation is compromised when working memory integration is required by both processes.


2011 ◽  
Vol 56 (2) ◽  
pp. 157-166 ◽  
Author(s):  
S. Lanfranchi ◽  
A. Baddeley ◽  
S. Gathercole ◽  
R. Vianello

Author(s):  
Mara Kottlow ◽  
Anthony Schlaepfer ◽  
Anja Baenninger ◽  
Lars Michels ◽  
Daniel Brandeis ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Patrick D. Fischer ◽  
Keith A. Hutchison ◽  
James N. Becker ◽  
Scott M. Monfort

Cognitive function plays a role in understanding noncontact anterior cruciate ligament injuries, but the research into how cognitive function influences sport-specific movements is underdeveloped. The purpose of this study was to determine how various cognitive tasks influenced dual-task jump-landing performance along with how individuals’ baseline cognitive ability mediated these relationships. Forty female recreational soccer and basketball players completed baseline cognitive function assessments and dual-task jump landings. The baseline cognitive assessments quantified individual processing speed, multitasking, attentional control, and primary memory ability. Dual-task conditions for the jump landing included unanticipated and anticipated jump performance, with and without concurrent working memory and captured visual attention tasks. Knee kinematics and kinetics were acquired through motion capture and ground reaction force data. Jumping conditions that directed visual attention away from the landing, whether anticipated or unanticipated, were associated with decreased peak knee flexion angle (P < .001). No interactions between cognitive function measures and jump-landing conditions were observed for any of the biomechanical variables, suggesting that injury-relevant cognitive-motor relationships may be specific to secondary task demands and movement requirements. This work provides insight into group- and subject-specific effects of established anticipatory and novel working memory dual-task paradigms on the neuromuscular control of a sport-specific movement.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Markus Martini ◽  
Robert Marhenke ◽  
Caroline Martini ◽  
Sonja Rossi ◽  
Pierre Sachse

Abstract Similar to sleeping after learning, a brief period of wakeful resting after encoding new information supports memory retention in contrast to task-related cognition. Recent evidence suggests that working memory capacity (WMC) is related to sleep-dependent declarative memory consolidation. We tested whether WMC moderates the effect of a brief period of wakeful resting compared to performing a distractor task subsequent to encoding a word list. Participants encoded and immediately recalled a word list followed by either an 8 min wakeful resting period (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention for 8 min. At the end of the experimental session (after 12–24 min) and again, after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results show that interindividual differences in WMC are a central moderating factor for the effect of post-learning activity on memory retention. The difference in word retention between a brief period of wakeful resting versus performing a selective attention task subsequent to encoding increased in higher WMC individuals over a retention interval of 12–24 min, as well as over 7 days. This effect was reversed in lower WMC individuals. Our results extend findings showing that WMC seems not only to moderate sleep-related but also wakeful resting-related memory consolidation.


Sign in / Sign up

Export Citation Format

Share Document