scholarly journals The relationship between the action potential, intracellular calcium and force in intact phasic, guinea-pig uretic smooth muscle

1999 ◽  
Vol 520 (3) ◽  
pp. 867-883 ◽  
Author(s):  
T. V. Burdyga ◽  
Susan Wray
1994 ◽  
Vol 267 (5) ◽  
pp. G938-G946 ◽  
Author(s):  
F. Vogalis ◽  
R. R. Bywater ◽  
G. S. Taylor

The electrical basis of propulsive contractions in the guinea pig choledochoduodenal junction (CDJ), which are triggered by distension, was investigated using intracellular microelectrode recording techniques. The isolated CDJ was placed in a continuously perfused tissue chamber at 37 degrees C. Membrane potential was recorded from smooth muscle cells in either the ampulla or in the upper CDJ (upper junction) regions, which were immobilized by pinning. Distension of the upper junction (20-30 s) by increasing intraductal hydrostatic pressure (mean elevation: 2.0 +/- 0.3 kPa, n = 13) triggered "transient depolarizations" (TDs: < 5 mV in amplitude and 2-5 s in duration) and action potentials in the circular muscle layer of the ampulla. The frequency of TDs in the ampulla was increased from 2.2 +/- 0.2 to 15.9 +/- 2.2 min-1 (n = 13) during distension. Simultaneous impalements of cells in the longitudinal and circular muscle layers in the ampulla revealed that subthreshold TDs in the circular layer were associated with an increased rate of action potential discharge in the longitudinal layer. Atropine (Atr; 1.4 x 10(-6) M) and tetrodotoxin (TTX; 3.1 x 10(-6) M blocked the distension-evoked increase in TD frequency, without affecting the frequency of ongoing TDs. The sulfated octapeptide of cholecystokinin (1-5 x 10(-8) M) increased the amplitude of TDs recorded in the circular muscle layer of the ampulla and increased action potential discharge rate. In separate recordings, radial stretch of the ampulla region increased the rate of discharge of action potentials in the smooth muscle of the upper junction.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 275 (6) ◽  
pp. L1026-L1030 ◽  
Author(s):  
Martin Bard ◽  
Sergio Salmeron ◽  
Catherine Coirault ◽  
Francois-Xavier Blanc ◽  
Yves Lecarpentier

In the guinea pig, tracheal smooth muscle (TSM) exhibits intrinsic tone (IT). The active nature of IT suggests that it could be influenced by muscle length and load. In the guinea pig, IT is entirely suppressed by the cyclooxygenase inhibitor indomethacin. IT could be measured as the difference between resting tone before and after indomethacin addition. We examined, in electrically stimulated TSM strips ( n= 9), the influence of initial muscle length ( L i) on IT, the relationship between IT and the maximum extent of relaxation (ΔF1), and the influence of indomethacin on active isometric force. When L i decreased from 100 to 75% of optimal L i, there was a significant decrease in IT (from 12.0 ± 0.2 to 5.3 ± 0.1 mN; P < 0.001). Over the range of L i studied, ΔF1 underestimated the amount of IT, but there was a close linear relationship between ΔF1 and IT ( r = 0.9). Compared with the basal state, indomethacin increased active isometric force (from 9.5 ± 1.0 to 19.7 ± 2.0 mN at optimal L i; P < 0.001) and induced its length dependency. In guinea pig TSM, L i was an important determinant of IT.


1967 ◽  
Vol 50 (10) ◽  
pp. 2459-2475 ◽  
Author(s):  
M. R. Bennett

The effect of intracellular current pulses on the membrane of smooth muscle cells of the guinea pig vas deferens at rest and during transmission was studied. Two main response types were identified: active response cells, in which a spike was initiated in response to depolarizing currents of sufficient strength and duration; passive response cells, in which depolarizing currents gave only electrotonic potential changes. These cells were three times more numerous than the active response cells. During the crest of the active response the input resistance fell by about 25% of the resting value. Comparison of the active response with the action potential due to stimulating the hypogastric nerve showed that the former was smaller in amplitude and had a slower rate of rise and higher threshold. Electrical coupling occurred between the smooth muscle cells during the propagation of the action potential. Depolarizing current pulses had no effect on the amplitude of the excitatory junction potential (E.J.P.) in passive response cells, but in general did decrease its amplitude in active response cells. These results are discussed with respect to the mechanism of autonomic neuroeffector transmission.


Sign in / Sign up

Export Citation Format

Share Document