scholarly journals Slow recovery from inactivation regulates the availability of voltage‐dependent Na + channels in hippocampal granule cells, hilar neurons and basket cells

2001 ◽  
Vol 532 (2) ◽  
pp. 385-397 ◽  
Author(s):  
Richard K. Ellerkmann ◽  
Vladimir Riazanski ◽  
Christian E. Elger ◽  
Bernd W. Urban ◽  
Heinz Beck
1999 ◽  
Vol 113 (2) ◽  
pp. 333-346 ◽  
Author(s):  
G. Richard Benzinger ◽  
Gayle S. Tonkovich ◽  
Dorothy A. Hanck

Site-3 toxins isolated from several species of scorpion and sea anemone bind to voltage-gated Na channels and prolong the time course of INa by interfering with inactivation with little or no effect on activation, effects that have similarities to those produced by genetic diseases in skeletal muscle (myotonias and periodic paralysis) and heart (long QT syndrome). Some published reports have also reported the presence of a noninactivating persistent current in site-3 toxin-treated cells. We have used the high affinity site-3 toxin Anthopleurin B to study the kinetics of this current and to evaluate kinetic differences between cardiac (in RT4-B8 cells) and neuronal (in N1E-115 cells) Na channels. By reverse transcription–PCR from N1E-115 cell RNA multiple Na channel transcripts were detected; most often isolated were sequences homologous to rBrII, although at low frequency sequences homologous to rPN1 and rBrIII were also detected. Toxin treatment induced a voltage-dependent plateau current in both isoforms for which the relative amplitude (plateau current/peak current) approached a constant value with depolarization, although the magnitude was much greater for neuronal (17%) than cardiac (5%) INa. Cell-attached patch recordings revealed distinct quantitative differences in open times and burst durations between isoforms, but for both isoforms the plateau current comprised discrete bursts separated by quiescent periods, consistent with toxin induction of an increase in the rate of recovery from inactivation rather than a modal failure of inactivation. In accord with this hypothesis, toxin increased the rate of whole-cell recovery at all tested voltages. Moreover, experimental data support a model whereby recovery at negative voltages is augmented through closed states rather than through the open state. We conclude that site-3 toxins produce qualitatively similar effects in cardiac and neuronal channels and discuss implications for channel kinetics.


2015 ◽  
Vol 88 (5) ◽  
pp. 866-879 ◽  
Author(s):  
Vaibhavkumar S. Gawali ◽  
Peter Lukacs ◽  
Rene Cervenka ◽  
Xaver Koenig ◽  
Lena Rubi ◽  
...  

1996 ◽  
Vol 108 (2) ◽  
pp. 89-104 ◽  
Author(s):  
L Tang ◽  
R G Kallen ◽  
R Horn

A pair of conserved methionine residues, located on the cytoplasmic linker between segments S4 and S5 in the fourth domain of human heart Na channels (hH1), plays a role in the kinetics and voltage dependence of inactivation. Substitution of these residues by either glutamine (M1651M1652/QQ) or alanine (MM/AA) increases the inactivation time constant (tau) at depolarized voltages, shifts steady-state inactivation (h infinity) in a depolarized direction, and decreases the time constant for recovery from inactivation. The data indicate that the mutations affect the rate constants for both binding and unbinding of a hypothetical inactivation particle from its binding site. Cytoplasmic application of the pentapeptide KIFMK in Na channels mutated to remove inactivation produces current decays resembling inactivation (Eaholtz, G., T. Scheuer, and W.A. Catterall. 1994. Neuron. 12: 1041-1048.). KIFMK produces a concentration-dependent, voltage-independent increase in the decay rate of MM/QQ and MM/AA currents at positive membrane potentials (Ki approximately 30 microM), while producing only a small increase in the decay rate of wild-type currents at a concentration of 200 microM. Although MM/QQ inactivates approximately 2.5-fold faster than MM/AA in the absence of peptide, the estimated rate constants for peptide block and unblock do not differ in these mutants. External Na+ ions antagonize the block by cytoplasmic KIFMK of MM/AA channels, but not the inactivation kinetics of this mutant in the absence of peptide. The effect of external [Na+] is interpreted as a voltage-dependent knock-off mechanism. The data provide evidence that KIFMK can only block channels when they are open and that peptide block does not mimic the inactivation process.


2001 ◽  
Vol 537 (2) ◽  
pp. 391-406 ◽  
Author(s):  
Vladimir Riazanski ◽  
Albert Becker ◽  
Jian Chen ◽  
Dmitry Sochivko ◽  
Ailing Lie ◽  
...  

2000 ◽  
Vol 278 (3) ◽  
pp. H806-H817 ◽  
Author(s):  
Gary A. Gintant

Although inactivation of the rapidly activating delayed rectifier current ( I Kr) limits outward current on depolarization, the role of I Kr (and recovery from inactivation) during repolarization is uncertain. To characterize I Krduring ventricular repolarization (and compare with the inward rectifier current, I K1), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I Kr was minimal at plateau potentials but transiently increased during repolarizing ramps. The I Kr transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I Kr transient terminating the plateau. Although peak I Kr transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current ( I K1) density during repolarization was dispersed, whereas potentials characterizing I K1 defined a narrower (more negative) voltage range. In summary, rapidly activating I Kr provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I Kr provides a novel means for modulating the contribution of this current during repolarization.


Sign in / Sign up

Export Citation Format

Share Document