Polyglutamine tract-binding protein-1 dysfunction induces cell death of neurons through mitochondrial stress

2005 ◽  
Vol 95 (3) ◽  
pp. 858-870 ◽  
Author(s):  
Shigeki Marubuchi ◽  
Yo-ichi Wada ◽  
Tomohiro Okuda ◽  
Yukiko Hara ◽  
Mei-ling Qi ◽  
...  
Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 517-529
Author(s):  
Kentaro Ohkuni ◽  
Asuko Okuda ◽  
Akihiko Kikuchi

AbstractNbp2p is a Nap1-binding protein in Saccharomyces cerevisiae identified by its interaction with Nap1 by a two-hybrid system. NBP2 encodes a novel protein consisting of 236 amino acids with a Src homology 3 (SH3) domain. We showed that NBP2 functions to promote mitotic cell growth at high temperatures and cell wall integrity. Loss of Nbp2 results in cell death at high temperatures and in sensitivity to calcofluor white. Cell death at high temperature is thought not to be due to a weakened cell wall. Additionally, we have isolated several type-2C serine threonine protein phosphatases (PTCs) as multicopy suppressors and MAP kinase-kinase (MAPKK), related to the yeast PKC MAPK pathway, as deletion suppressors of the nbp2Δ mutant. Screening for deletion suppressors is a new genetic approach to identify and characterize additional proteins in the Nbp2-dependent pathway. Genetic analyses suggested that Ptc1, which interacts with Nbp2 by the two-hybrid system, acts downstream of Nbp2 and that cells lacking the function of Nbp2 prefer to lose Mkk1, but the PKC MAPK pathway itself is indispensable when Nbp2 is deleted at high temperature.


Autophagy ◽  
2008 ◽  
Vol 4 (8) ◽  
pp. 1079-1082 ◽  
Author(s):  
Siqin Zhaorigetu ◽  
Guanghua Wan ◽  
Ramesh Kaini ◽  
Guanghua Wan ◽  
Zeyu Jiang ◽  
...  

Development ◽  
2002 ◽  
Vol 129 (1) ◽  
pp. 187-196 ◽  
Author(s):  
Yuki Kodama ◽  
Joel H. Rothman ◽  
Asako Sugimoto ◽  
Masayuki Yamamoto

Histones play important roles not only in the structural changes of chromatin but also in regulating gene expression. Expression of histones is partly regulated post-transcriptionally by the stem-loop binding protein (SLBP)/hairpin binding protein (HBP). We report the developmental function of CDL-1, the C. elegans homologue of SLBP/HBP. In the C. elegans cdl-1 mutants, cell corpses resulting from programmed cell death appear later and persist much longer than those in the wild type. They also exhibit distinct morphological defects in body elongation and movement of the pharyngeal cells toward the buccal opening. The CDL-1 protein binds to the stem-loop structures in the 3′-UTR of C. elegans core histone mRNAs, and the mutant forms of this protein show reduced binding activities. A decrease in the amount of core histone proteins phenocopied the cdl-1 mutant embryos, suggesting that CDL-1 contributes to the proper expression of core histone proteins. We propose that loss-of-function of cdl-1 causes aberrant chromatin structure, which affects the cell cycle and cell death, as well as transcription of genes essential for morphogenesis.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1869 ◽  
Author(s):  
Can Huang ◽  
Wenjun Lan ◽  
Nicolas Fraunhoffer ◽  
Analía Meilerman ◽  
Juan Iovanna ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with almost no curative chemotherapeutic treatment. Besides the development of new compounds, repurposing of approved drugs to treat cancer, alone or in combination, has become an attractive strategy, showing many therapeutic and economic advantages. However, it is necessary to improve our knowledge about the mechanism of cell death elicited by approved drugs itself, but also to rationally develop more powerful multidrug treatments. In this work, we focus our attention on determining the mechanism promoting cell death following trifluoperazine (TFP) treatment, which is an antipsychotic drug with strong anticancer activity in PDAC. We demonstrate that TFP induces cell death by apoptosis and necroptosis, which can be partially inhibited by Z-VAD-FMK as well as necrostatin-1, respectively. This cell death promotion is triggered by a poor ATP content, observed in TFP-treated cells as a consequence of a dramatic decrease in OXPHOS metabolism due to mitochondrial stress. Remarkably, mitochondrial homeostasis was seriously affected, and a loss of mitochondrial membrane potential and ROS overproduction was observed. Moreover, this mitochondrial stress was coupled with an ER stress and the activation of the endoplasmic-reticulum-associated protein degradation (ERAD) and the unf olded protein response (UPR) pathways. We took advantage of this information and inhibited this process by using the proteasome inhibitors MG-132 or bortezomib compounds in combination with TFP and found a significant improvement of the anticancer effect of the TFP on primary PDAC-derived cells. In conclusion, this study not only uncovers the molecular mechanisms that are triggered upon TFP-treatment but also its possible combination with bortezomib for the future development of therapies for pancreatic cancer.


2002 ◽  
Vol 277 (22) ◽  
pp. 19304-19314 ◽  
Author(s):  
Min Chul Kim ◽  
Sang Hyoung Lee ◽  
Jong Kyong Kim ◽  
Hyun Jin Chun ◽  
Man Soo Choi ◽  
...  

2015 ◽  
Vol 11 (8) ◽  
pp. 860-867 ◽  
Author(s):  
Wanrui Ma ◽  
Li Jing ◽  
Alexandra Valladares ◽  
Suresh L. Mehta ◽  
Zhizhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document