Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-Based Freeze Casting

2007 ◽  
Vol 90 (6) ◽  
pp. 1744-1752 ◽  
Author(s):  
Byung-Ho Yoon ◽  
Young-Hag Koh ◽  
Chee-Sung Park ◽  
Hyoun-Ee Kim
2020 ◽  
Vol 65 (3) ◽  
pp. 273-287 ◽  
Author(s):  
Farnaz Ghorbani ◽  
Ali Zamanian ◽  
Melika Sahranavard

AbstractThere are many methods used to fabricate the scaffolds for tissue regeneration, among which freeze casting has attracted a great deal of attention due to the capability to create a unidirectional structure. In this study, polycaprolactone (PCL) scaffolds were fabricated by freeze-casting technology in order to create porous microstructure with oriented open-pore channels. To induce biomineralization, and to improve hydrophilicity and cell interactions, mussel-inspired polydopamine (PDA) was coated on the surface of the freeze-cast PCL constructs. Then, the synergistic effects of oriented microstructure and deposited layer on efficient reconstruction of injured bone were studied. Microscopic observations demonstrated that, the coated layer did not show any special change in lamellar microstructure of the scaffolds. Water-scaffold interactions were evaluated by contact angle measurements, and they demonstrated strong enhancement in the hydrophilicity of the polymeric scaffolds after PDA coating. Biodegradation ratio and water uptake evaluation confirmed an increase in the measured values after PDA precipitation. The biomineralization of the PDA-coated scaffolds was characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD). Obtained results confirmed biomineralization of the constructs after a 28-day immersion in a simulated body fluid (SBF) solution. Mechanical analysis demonstrated higher compressive strength after PDA coating. L929 fibroblast cell viability and attachment illustrated that PDA-coated PCL scaffolds are able to support cell adhesion and proliferation. The increased secretion of alkaline phosphatase (ALP) after culturing osteosarcoma cell lines (MG-63) revealed the initial capability of scaffolds to induce bone regeneration. Therefore, the PDA-coated scaffolds introduce a promising approach for bone tissue engineering application.


2017 ◽  
Author(s):  
Pedram Parandoush ◽  
Hanxiong Fan ◽  
Xiaolei Song ◽  
Dong Lin

Bioceramics with porous microstructure has attracted intense attention in tissue engineering due to tissue growth facilitation in the human body. In the present work, a novel manufacturing process for producing hydroxyapatite (HA) aerogels with a high density shell inspired by human bone microstructure is proposed for bone tissue engineering applications. This method combines laser processing and traditional freeze casting in which HA aerogel is prepared by freeze casting and aqueous suspension prior to laser processing of the aerogel surface with a focused CO2 laser beam that forms a dense layer on top of the porous microstructure. Using the proposed method, HA aerogel with dense shell was successfully prepared with a microstructure similar to human bone. The effect of laser process parameters on surface and cross-sectional morphology and microstructure was investigated in order to obtain optimum parameters and have a better understanding of the process. Low laser energy resulted in fragile surface with defects and cracks due to low temperature and inability of laser to fully melt the surface while high laser energy caused thermal damage both to surface and microstructure. The range of 40–45 W laser power, 5 mm/s scanning speed, spot size of 1 mmm and 50 % overlap in laser scanning the surface yielded the best surface morphology and micro structure in our experiments.


Biomaterials ◽  
2006 ◽  
Vol 27 (32) ◽  
pp. 5480-5489 ◽  
Author(s):  
Sylvain Deville ◽  
Eduardo Saiz ◽  
Antoni P. Tomsia

2009 ◽  
Vol 11 (11) ◽  
pp. 875-884 ◽  
Author(s):  
Silke Blindow ◽  
Maxim Pulkin ◽  
Dietmar Koch ◽  
Georg Grathwohl ◽  
Kurosch Rezwan

2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Pedram Parandoush ◽  
Hanxiong Fan ◽  
Xiaolei Song ◽  
Dong Lin

Bioceramics with porous microstructure has attracted intense attention in tissue engineering due to tissue growth facilitation in the human body. In the present work, a novel manufacturing process for producing hydroxyapatite (HA) aerogels with a high density shell inspired by human bone microstructure is proposed for bone tissue engineering applications. This method combines laser processing and traditional freeze casting, in which HA aerogel is prepared by freeze casting and aqueous suspension prior to laser processing of the aerogel surface with a focused CO2 laser beam that forms a dense layer on top of the porous microstructure. Using the proposed method, HA aerogel with dense shell was successfully prepared with a microstructure similar to human bone. The effect of laser process parameters on the surface, cross-sectional morphology and microstructure was investigated in order to obtain optimum parameters and has a better understanding of the process. Low laser energy resulted in a fragile thin surface with defects and cracks due to the thermal stress induced by the laser processing. However, increasing the laser power generated a thicker dense layer on the surface, free of defects. The range of 40–45 W laser power, 5 mm/s scanning speed, spot size of 1 mm, and 50% overlap in laser scanning the surface yielded the best surface morphology and microstructure in our experiments.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Author(s):  
Mariane Beatriz Sordi ◽  
Ariadne Cristiane Cabral da Cruz ◽  
Águedo Aragones ◽  
Mabel Mariela Rodríguez Cordeiro ◽  
Ricardo de Souza Magini

The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite / β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m:m) of this medication. Scaffolds were synthesized in a cylindric-shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in PBS at 37 °C under constant stirring for 7, 14, 21, and 28 days. Non-degraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro, meso, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented very similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document