scholarly journals Evaluating food availability and nest predation risk as sources of bias in aural bird surveys

2010 ◽  
Vol 81 (4) ◽  
pp. 420-429 ◽  
Author(s):  
Bruce A. Robertson ◽  
Richard L. Hutto ◽  
Joseph J. Fontaine
2012 ◽  
Vol 24 (3) ◽  
pp. 698-707 ◽  
Author(s):  
Helen R. Sofaer ◽  
T. Scott Sillett ◽  
Susana I. Peluc ◽  
Scott A. Morrison ◽  
Cameron K. Ghalambor

2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Predation of offspring is the main cause of reproductive failure in many species, and the mere fear of offspring predation shapes reproductive strategies. Yet, natural predation risk is ubiquitously variable and can be unpredictable. Consequently, the perceived prospect of predation early in a reproductive cycle may not reflect the actual risk to ensuing offspring. An increased variance in investment across offspring has been linked to breeding in unpredictable environments in several taxa, but has so far been overlooked as a maternal response to temporal variation in predation risk. Here, we experimentally increased the perceived risk of nest predation prior to egg-laying in seven bird species. Species with prolonged parent-offspring associations increased their intra-brood variation in egg, and subsequently offspring, size. High risk to offspring early in a reproductive cycle can favour a risk-spreading strategy particularly in species with the greatest opportunity to even out offspring quality after fledging.


Author(s):  
Kristina Noreikienė ◽  
Kim Jaatinen ◽  
Benjamin B. Steele ◽  
Markus Öst

AbstractGlucocorticoid hormones may mediate trade-offs between current and future reproduction. However, understanding their role is complicated by predation risk, which simultaneously affects the value of the current reproductive investment and elevates glucocorticoid levels. Here, we shed light on these issues in long-lived female Eiders (Somateria mollissima) by investigating how current reproductive investment (clutch size) and hatching success relate to faecal glucocorticoid metabolite [fGCM] level and residual reproductive value (minimum years of breeding experience, body condition, relative telomere length) under spatially variable predation risk. Our results showed a positive relationship between colony-specific predation risk and mean colony-specific fGCM levels. Clutch size and female fGCM were negatively correlated only under high nest predation and in females in good body condition, previously shown to have a longer life expectancy. We also found that younger females with longer telomeres had smaller clutches. The drop in hatching success with increasing fGCM levels was least pronounced under high nest predation risk, suggesting that elevated fGCM levels may allow females to ensure some reproductive success under such conditions. Hatching success was positively associated with female body condition, with relative telomere length, particularly in younger females, and with female minimum age, particularly under low predation risk, showing the utility of these metrics as indicators of individual quality. In line with a trade-off between current and future reproduction, our results show that high potential for future breeding prospects and increased predation risk shift the balance toward investment in future reproduction, with glucocorticoids playing a role in the resolution of this trade-off.


2010 ◽  
Vol 76 (4) ◽  
pp. 348-353 ◽  
Author(s):  
A. A. Robson ◽  
C. Garcia De Leaniz ◽  
R. P. Wilson ◽  
L. G. Halsey

1998 ◽  
Vol 55 (2) ◽  
pp. 387-396 ◽  
Author(s):  
Nathan P Nibbelink ◽  
Stephen R Carpenter

Habitat structure alters food availability and predation risk, thereby directly affecting growth, mortality, and size structure of fish populations. Size structure has often been used to infer patterns of resource abundance and predation. However, food availability and predation risk in contrasting habitats have proven difficult to measure in the field. We use an inverse modeling approach to estimate food availability and habitat choice parameters from changes in length distributions of bluegill (Lepomis macrochirus). The model suggests that dynamics of bluegill length distributions primarily reflect food availability and habitat choice. Bluegill behavior minimized effects of size-selective predation on size structure. Parameters for food availability and habitat choice were correlated. It was therefore not possible to attain unique estimates of food availability and habitat selection when both were free parameters. However, when one parameter was estimated independently, the other could be identified. In five Wisconsin lakes, seining studies were used to estimate the size at which bluegill switched from littoral to pelagic habitats. Using this measure of switch size in the model, we estimated food availability for bluegill in each lake. These estimates were positively correlated with observed growth (r2 = 0.91), demonstrating the model's ability to estimate food availability.


Mammalia ◽  
2015 ◽  
Vol 79 (4) ◽  
Author(s):  
Roberta Chirichella ◽  
Andrea Mustoni ◽  
Marco Apollonio

AbstractIn large mammalian herbivores, an increase in herd size not only reduces predation risk but also energy intake. As a consequence, the size of the groups made up by herbivores is often assumed to be the outcome of a trade-off depending on local predation risk and food availability. We studied Alpine chamois (


2016 ◽  
Vol 85 (4) ◽  
pp. 892-902 ◽  
Author(s):  
Sarah R. Hoy ◽  
Alexandre Millon ◽  
Steve J. Petty ◽  
D. Philip Whitfield ◽  
Xavier Lambin

Sign in / Sign up

Export Citation Format

Share Document