The effects of post-inoculation wet and dry periods, and inoculum concentration, on lesion numbers of Septoria nodorum in spring wheat seedlings

1985 ◽  
Vol 106 (1) ◽  
pp. 55-63 ◽  
Author(s):  
M. J. JEGER ◽  
ELLIS GRIFFITHS ◽  
D. GARETH. JONES
1964 ◽  
Vol 42 (9) ◽  
pp. 1123-1133 ◽  
Author(s):  
J. T. Slykhuis ◽  
P. L. Sherwood

Endria inimica Say acquired the North American type of wheat striate mosaic virus during periods of 15 minutes or longer on diseased plants held at five constant temperatures ranging from 10 to 33 °C. When infective insects were given inoculation access periods varying from 1 to 4 days at different temperatures, the percentage of test plants infected increased with temperature from 12.5% at 10° to 81.4% at 33 °C. After an acquisition access period of 2 days at 24 °C, insects kept at 8 or 10 °C did not transmit virus, but the percentage of others that transmitted at successively higher temperatures increased from 3.3% at 16 °C to 73.3% at 33 °C. The preinfective period was more than 29 days for insects kept at 16 °C and only 5 days for some kept at 27, 30, and 33 °C. The average preinfective period was 11 days at 20 °C, but decreased to 6.4 days as temperature increased to 33 °C. The percentage of test plants that became infected increased from 0.1% at 16 °C to 44.3%, at 33 °C. Stewart and Ramsey wheat seedlings exposed to infective E. inimica for 2 days did not develop symptoms during a subsequent 60 day period at 10 °C. After the same plants were placed in a greenhouse at 20–25 °C, 26% and 27%, respectively, developed symptoms. The incubation period for symptoms in plants ranged from 17 to more than 62 days at 16 °C. It decreased as temperature increased but varied from 6 to 25 days at 30 °C. Forty-two and 48% of Stewart and Ramsey wheat plants respectively, developed symptoms at 16 °C, and increased to almost 100% for both varieties at 30 and 33 °C. The above results indicate that high temperatures during early summer are prerequisite for severe epidemics of wheat striate mosaic in spring wheat.


1991 ◽  
Vol 10 (4) ◽  
pp. 260-264 ◽  
Author(s):  
Jari Peltonen ◽  
Sari Kittilä ◽  
Pirjo Peltonen-Sainio ◽  
Reijo Karjalainen

1985 ◽  
Vol 57 (1) ◽  
pp. 1-66
Author(s):  
Reijo Karjalainen

Host-pathogen interaction between spring wheat and Septoria nodorum Berk. with applications for wheat breeding were studied. Ultrastructure of interactions was studied using electron microscopic techniques. Following inoculation, conidia of S. nodorum germinate, form appressoria anda penetration peg which directly penetrates through the cell walls. It is suggested that most penetration attempts fail because of cellular defence reactions, formation of papillae and cell wall alterations. Inoculation with low spore concentration reduced grain yield of Hankkija’s Taava cultivar by 10 % and 1000-grain weight by 14 %. Inoculation with high spore concentration on large plots of Tähti cultivar reduced grain yield by 32 % and 1000-grain weight by 18 %. Inoculation with high spore concentration on normal breeding plots of Tähti cultivar reduced grain yield by 35 % and 1000-grain weight by 21 % and the grain yield of Kadett cultivar by 27 % and 1000-grain weight by 20 %. Inheritance studies on F2 progenies of spring wheat crosses involving susceptible and moderately or highly resistant parents suggest that heredity component of symptom expression is moderate level and breeding success depends mainly on efficient screening techniques. Resistance was associated with tallness in crosses, and cultivar trials suggest that resistance is positively associated with late maturation time. Field screening techniques based on small plots and artificial inoculation showed that the most resistant entries were wild Triticum species and late and tall cultivars. Seedling plant tests based on attached seedling leaves and detached leaves revealed easily the most resistant and most susceptible cultivars. The overall correlation between seedling tests and field tests was quite high. The results are discussed in relation to wheat breeding strategies for resistance to S. nodorum.


2018 ◽  
Vol 40 (3) ◽  
Author(s):  
U. Sienkiewicz-Cholewa ◽  
J. Sumisławska ◽  
E. Sacała ◽  
M. Dziągwa-Becker ◽  
R. Kieloch

2019 ◽  
Vol 113 (2) ◽  
pp. 731-741
Author(s):  
Ronald E Batallas ◽  
Maya L Evenden

Abstract The redbacked cutworm, Euxoa ochrogaster (Guenée), and the pale western cutworm, Agrotis orthogonia (Morrison), are generalist pests that cause sporadic economic damage to several annual crops in the Canadian Prairies. Early larval instars feed on foliage, whereas mature larvae eat into the stem and sever crop seedlings. Here, we evaluate the influence of annual crop species and host fertilization on the larval performance and feeding preference of both cutworm species. Performance is the ability of an insect to reach its maximum growth potential. The first set of experiments evaluated larval development and preference on canola (Brassica napus L. [Capparales: Brassicaeae]), field peas (Pisum sativa L. [Fabales: Fabaceae]), and spring wheat (Triticum aestivum L. [Cyperales: Poaceae]). The redbacked cutworm had higher performance on canola and peas, while the pale western cutworm had higher performance on wheat. In multiple-choice feeding experiments, the redbacked cutworm consumed more canola, whereas the pale western cutworm consumed more spring wheat. The third set of experiments evaluated larval development on fertilized and unfertilized seedlings of canola and spring wheat seedlings. When fed unfertilized seedlings, the redbacked cutworm had better performance on canola than spring wheat, whereas pale western cutworm had better performance on spring wheat than canola. Fertilizer application enhanced the performance of both cutworms regardless of the crop species. Despite their generalist feeding behavior, both cutworm species have a larval feeding preference for the host plant on which they achieve high performance. Canola-cereal cropping is a common crop rotation schedule in the region; however, this tactic will not negatively impact cutworm performance.


2010 ◽  
Vol 216 (1-4) ◽  
pp. 561-569
Author(s):  
Benedikta Lukšienė ◽  
Marina Konstantinova ◽  
Rūta Druteikienė ◽  
Jūratė Darginavičienė ◽  
Virgilija Gavelienė ◽  
...  

Euphytica ◽  
1983 ◽  
Vol 32 (2) ◽  
pp. 575-584 ◽  
Author(s):  
M. J. Jeger ◽  
D. Gareth Jones ◽  
Ellis Griffiths

1997 ◽  
Vol 39 (3) ◽  
pp. 463-466 ◽  
Author(s):  
W. Nowakowski ◽  
J. Nowakowska
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document