Implications of Eastern Ground-Motion Characteristics for Seismic Hazard Assessment in Eastern North America

1989 ◽  
Vol 558 (1 Earthquake Ha) ◽  
pp. 128-135 ◽  
Author(s):  
GAIL M. ATKINSON
2021 ◽  
Author(s):  
Enrico Brandmayr ◽  
Franco Vaccari ◽  
Giuliano Francesco Panza

AbstractThe Corsica-Sardinia lithospheric block is commonly considered as a region of very low seismicity and the scarce reported seismicity for the area has till now precluded the reliable assessment of its seismic hazard. The time-honored assumption has been recently questioned and the historical seismicity of Sardinia has been reevaluated. Even more, several seismogenic nodes capable of M5 + have been recognized in the Corsica-Sardinia block exploiting the morphostructural zonation technique, calibrated to earlier results obtained for the Iberian peninsula, which has structural lithospheric affinities with the Corsica-Sardinia block. All this allows now for the computation of reliable earthquake hazard maps at bedrock conditions exploiting the power of Neo Deterministic Seismic Hazard Assessment (NDSHA) evaluation. NDSHA relies upon the fundamental physics of wave generation and propagation in complex geologic structures and generates realistic time series from which several earthquake ground motion parameters can be readily extracted. NDSHA exploits in an optimized way all the available knowledge about lithospheric mechanical parameters, seismic history, seismogenic zones and nodes. In accordance with continuum mechanics, the tensor nature of earthquake ground motion is preserved computing realistic signals using structural models obtained by tomographic inversion and earthquake source information readily available in literature. The way to this approach has been open by studies focused on continental Italy and Sicily, where the agreement between hazard maps obtained using seismogenic zones, informed by earthquake catalog data, and the maps obtained using only seismogenic nodes are very good.


2016 ◽  
Vol 59 ◽  
Author(s):  
Maura Murru ◽  
Matteo Taroni ◽  
Aybige Akinci ◽  
Giuseppe Falcone

<p>The recent Amatrice strong event (M<sub>w</sub>6.0) occurred on August 24, 2016 in Central Apennines (Italy) in a seismic gap zone, motivated us to study and provide better understanding of the seismic hazard assessment in the macro area defined as “Central Italy”. The area affected by the sequence is placed between the M<sub>w</sub>6.0 1997 Colfiorito sequence to the north (Umbria-Marche region) the Campotosto area hit by the 2009 L’Aquila sequence M<sub>w</sub>6.3 (Abruzzo region) to the south. The Amatrice earthquake occurred while there was an ongoing effort to update the 2004 seismic hazard map (MPS04) for the Italian territory, requested in 2015 by the Italian Civil Protection Agency to the Center for Seismic Hazard (CPS) of the Istituto Nazionale di Geofisica e Vulcanologia INGV. Therefore, in this study we brought to our attention new earthquake source data and recently developed ground-motion prediction equations (GMPEs). Our aim was to validate whether the seismic hazard assessment in this area has changed with respect to 2004, year in which the MPS04 map was released. In order to understand the impact of the recent earthquakes on the seismic hazard assessment in central Italy we compared the annual seismic rates calculated using a smoothed seismicity approach over two different periods; the Parametric Catalog of the Historical Italian earthquakes (CPTI15) from 1871 to 2003 and the historical and instrumental catalogs from 1871 up to 31 August 2016. Results are presented also in terms of peak ground acceleration (PGA), using the recent ground-motion prediction equations (GMPEs) at Amatrice, interested by the 2016 sequence.</p>


Sign in / Sign up

Export Citation Format

Share Document