Light emitting diode(LED)-based trapping of the greenhouse whitefly (Trialeurodes vaporariorum )

2014 ◽  
Vol 139 (4) ◽  
pp. 268-279 ◽  
Author(s):  
N. Stukenberg ◽  
K. Gebauer ◽  
H.-M. Poehling
Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 94 ◽  
Author(s):  
Jihong Zhang ◽  
Huyin Li ◽  
Maorong Liu ◽  
Huan Zhang ◽  
Hai Sun ◽  
...  

Population control of small sucking insects has been challenging, and alternative control methods are constantly being sought. Visual traps have long been used to monitor and control pests. Colored sticky cards are widely used for diurnal pests, but their effects are influenced by environmental light conditions. Artificial light traps are mostly used for nocturnal pests. Here, we explored and evaluated light-emitting diode (LED) traps for the monitoring and control of small diurnal sucking insects using greenhouse tests targeting the greenhouse whitefly Trialeurodes vaporariorum. We tested the trapping efficacy of the LED water pan trap, assessed the most attractive LED light and analyzed its efficacy under different weather conditions. The results showed that the LED water pan trap was too inefficient to be useful. Green LEDs were more attractive than yellow LEDs, UV LEDs and green-UV combinations. Regardless of sunny or cloudy conditions, the green LED trap caught more than twice the number of whiteflies than the yellow sticky card alone under summer shading conditions. Our study suggests that LED traps have a significant field application value in whitefly mass trapping and may also be efficient for other diurnal insects. The design of LED traps specific for diurnal insects is discussed.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 871D-872
Author(s):  
Chang-chi Chu* ◽  
Kai Umeda ◽  
Tian-Ye Chen ◽  
Alvin M. Simmons ◽  
Thomas H. Henneberry

Insect traps are vital component of many entomological programs for detection and monitoring of insect populations. We equipped yellow (YC), blue (BC) sticky card (BC) with 530 nm lime green (LED-YC) and 470 nm blue (LED-BC) light-emitting diodes, respectively that increased trap catches of several insect pests. The LED-YC traps caught 1.3, 1.4, 1.8, and 4.8 times more adult greenhouse whitefly Trialeurodes vaporariorum (Westwood), sweetpotato whitefly Bemisia tabaci (Gennadius) biotype B, cotton aphids Gossypium hirsutum (L.), and fungus gnats Bradysia coprophila (Lintner), respectively, compared with standard YC traps. The LED-YC traps did not catch more Eretmocerus spp. than the standard YC traps. Eretmocerus spp. are important B. tabaci parasitoids used in greenhouse biological control programs. For whitefly control in greenhouse the 530 nm lime green LED equipped plastic cup trap designed by Chu et al. (2003) is the better choice than LED-YC trap because it catches few Eretmocerus spp. and Encarsia spp. whitefly parasitoids released for B. tabaci nymph control. The LED-BC traps caught 2.0-2.5 times more adult western flower thrips Franklinella occidentalis (Pergande) compared with the standard BC traps.


2020 ◽  
pp. 144-148

Chaos synchronization of delayed quantum dot light emitting diode has been studied theortetically which are coupled via the unidirectional and bidirectional. at synchronization of chaotic, The dynamics is identical with delayed optical feedback for those coupling methods. Depending on the coupling parameters and delay time the system exhibits complete synchronization, . Under proper conditions, the receiver quantum dot light emitting diode can be satisfactorily synchronized with the transmitter quantum dot light emitting diode due to the optical feedback effect.


PIERS Online ◽  
2007 ◽  
Vol 3 (6) ◽  
pp. 821-824 ◽  
Author(s):  
Chien-Chang Tseng ◽  
Liang-Wen Ji ◽  
Yu Sheng Tsai ◽  
Fuh-Shyang Juang

Author(s):  
Tan Liong Ching ◽  
Nureize Binti Arbaiy

The smart store system (F3 Storage System) provides an inventory system function, and is supported by voice recognition for items searching purpose in the warehouse. This system is aimed to improve effectiveness in item searching process for the warehouse management. An inventory system structures is employed in this system to enable items management. Voice recognition facility helps the worker to search item in an effective way. Worker can use voice recognition function to search the item in the warehouse, and searched information of the item will be displayed in the liquid crystal display (LCD) screen. Meanwhile, the location of the item will be physically indicated by the light emitting diode (LED) light function. The developed system also contains a barcode system to enhance the process of scheduling warehouse activity. Such facilities will enhance the capabilities of existing inventory management systems in warehouses. Prototyping model is used to assist project development. Arduino technology is used to enable integrated hardware and software to read data or input. With Arduino technology, traditional search items by using text and search functionality are enhanced to allow speech functionality. This functionality makes the search process faster and more efficient.


Sign in / Sign up

Export Citation Format

Share Document