Asymmetric expression patterns of B‐ and C‐class MADS‐box genes correspond to the asymmetrically specified androecial identities of Canna indica

Plant Biology ◽  
2020 ◽  
Author(s):  
Xueyi Tian ◽  
Xiaorong Li ◽  
Qianxia Yu ◽  
Haichan Zhao ◽  
Jingping Liao
2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


2019 ◽  
Author(s):  
Xiaodan Zhang ◽  
Mahpara Fatima ◽  
Ping Zhou ◽  
Qing Ma ◽  
Ray Ming

Abstract Background Pineapple is the most important crop with CAM photosynthesis, but its molecular biology is underexplored. MADS-box genes are crucial transcription factors involving in plant development and several biological processes. However, there is no systematic analysis of MADS-box family genes in pineapple ( Ananas comosus ).Results Forty-eight MADS-box genes were identified in the pineapple genome. Based on the phylogenetic studies, pineapple MADS-box genes can be divided into type I and type II MADS-box genes. Thirty-four pineapple genes were classified as type II MADS-box genes including 32 MIKC-type and 2 Mδ-type, while 14 type I MADS-box genes were further divided into Mα, Mβ and Mγ subgroups. A majority of pineapple MADS-box genes were randomly distributed across 19 chromosomes. RNA-seq expression patterns of MADS-box genes in four different tissues revealed that more genes were highly expressed in flowers, which was confirmed by our quantitative RT-PCR results. There is no FLC and CO orthologs in pineapple. The loss of FLC and CO orthologs in pineapple indicated that modified flowering genes network in this tropical plant compared with Arabidopsis . The expression patterns of MADS-box genes in photosynthetic and non-photosynthetic leaf tissues indicated the potential roles of some MADS-box genes in pineapple CAM photosynthesis. The 23% of pineapple MADS-box genes showed diurnal rhythm, indicating that these MADS-box genes are regulated by circadian clock.Conclusions MADS-box genes identified in pineapple are closely related to flowering development. Some MADS-box genes are involved in CAM photosynthesis and regulated by the circadian clock. These findings will facilitate research on the development of unusual spiral inflorescences on pineapple fruit and CAM photosynthesis.


Plant Gene ◽  
2017 ◽  
Vol 12 ◽  
pp. 50-56 ◽  
Author(s):  
Mercedes Ruiz-Estévez ◽  
Mohammed Bakkali ◽  
Rubén Martín-Blázquez ◽  
Manuel A. Garrido-Ramos

2015 ◽  
Vol 90 (4) ◽  
pp. 217-229 ◽  
Author(s):  
Miku Tanaka ◽  
Hiroko Tanaka ◽  
Naoki Shitsukawa ◽  
Satoshi Kitagawa ◽  
Shigeo Takumi ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
pp. 36-49 ◽  
Author(s):  
Chen Hou ◽  
Lingfei Li ◽  
Zhiming Liu ◽  
Yingjuan Su ◽  
Tao Wan

2021 ◽  
Vol 12 ◽  
Author(s):  
Hendrik N. J. Kuijer ◽  
Neil J. Shirley ◽  
Shi F. Khor ◽  
Jin Shi ◽  
Julian Schwerdt ◽  
...  

MADS-box genes have a wide range of functions in plant reproductive development and grain production. The ABCDE model of floral organ development shows that MADS-box genes are central players in these events in dicotyledonous plants but the applicability of this model remains largely unknown in many grass crops. Here, we show that transcript analysis of all MIKCc MADS-box genes through barley (Hordeum vulgare L.) inflorescence development reveals co-expression groups that can be linked to developmental events. Thirty-four MIKCc MADS-box genes were identified in the barley genome and single-nucleotide polymorphism (SNP) scanning of 22,626 barley varieties revealed that the natural variation in the coding regions of these genes is low and the sequences have been extremely conserved during barley domestication. More detailed transcript analysis showed that MADS-box genes are generally expressed at key inflorescence developmental phases and across various floral organs in barley, as predicted by the ABCDE model. However, expression patterns of some MADS genes, for example HvMADS58 (AGAMOUS subfamily) and HvMADS34 (SEPALLATA subfamily), clearly deviate from predicted patterns. This places them outside the scope of the classical ABCDE model of floral development and demonstrates that the central tenet of antagonism between A- and C-class gene expression in the ABC model of other plants does not occur in barley. Co-expression across three correlation sets showed that specifically grouped members of the barley MIKCc MADS-box genes are likely to be involved in developmental events driving inflorescence meristem initiation, floral meristem identity and floral organ determination. Based on these observations, we propose a potential floral ABCDE working model in barley, where the classic model is generally upheld, but that also provides new insights into the role of MIKCc MADS-box genes in the developing barley inflorescence.


Plant Gene ◽  
2019 ◽  
Vol 17 ◽  
pp. 100125
Author(s):  
Mercedes Ruiz-Estévez ◽  
Mohammed Bakkali ◽  
Rubén Martín-Blázquez ◽  
Manuel A. Garrido-Ramos

2019 ◽  
Author(s):  
Xiaodan Zhang ◽  
Mahpara Fatima ◽  
Ping Zhou ◽  
Ray Ming

Abstract Background Pineapple is the most important crop with CAM photosynthesis, but its molecular biology is underexplored. MADS-box genes are crucial transcription factors involving in plant development and several biological processes. However, there is no systematic analysis of MADS-box family genes in pineapple (Ananas comosus). Results Forty-eight MADS-box genes were identified in the pineapple genome. Based on the phylogenetic studies, pineapple MADS-box genes can be divided into type I and type II MADS-box genes. Thirty-four pineapple genes were classified as type II MADS-box genes including 32 MIKC-type and 2 Mδ-type, while 14 type I MADS-box genes were further divided into Mα, Mβ and Mγ subgroups. A majority of pineapple MADS-box genes were randomly distributed across 19 chromosomes. RNA-seq expression patterns of MADS-box genes in four different tissues revealed that more genes were highly expressed in flowers and three genes (Aco004785.1, Aco008359.1 and Aco007999.1) were expressed only in flowers. There is no FLC and CO orthologs in pineapple. The loss of FLC and CO orthologs in pineapple indicated that modified flowering genes network in this tropical plant compared with Arabidopsis. The expression patterns of MADS-box genes in photosynthetic and non-photosynthetic leaf tissues indicated the potential roles of some MADS-box genes in pineapple CAM photosynthesis. The 23% of pineapple MADS-box genes showed diurnal rhythm, indicating that these MADS-box genes are regulated by circadian clock. Conclusions MADS-box genes identified in pineapple are closely related to flowering development. Some MADS-box genes are involved in CAM photosynthesis and regulated by the circadian clock. These findings will facilitate research on the development of unusual spiral inflorescences on pineapple fruit and CAM photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document