On the Numerical Simulation of Rapid Pressure Swing Adsorption for Air Separation

Author(s):  
Thomas S. Y. Choong ◽  
William R. Paterson ◽  
David M. Scott

Model penjerapan buai tekanan deras yang konsisten (RPSA) secara fizikal telah dibangunkan oleh Choong (2000). Model ini boleh diselesaikan secara berangka dengan menjelmakan persamaan kebezaan biasa (ODE). Seterusnya, sistem ODE dikamirkan terhadap masa. Dua kaedah pendiskretan ruang dipertimbangkan, iaitu kaedah penempatan bersama ortogon (OC) dan penempatan bersama ortogon terhadap unsur terhingga (OCFE). Program penyelakuan RPSA disahkan menggunakan model proses supaya dapat dibandingkan keputusan berangka dengan penyelesaian keserupaan yang diperoleh oleh Scott (1991), bagi penekanan dan penyahtekanan udara terhadap lapisan penjerapan separuh tak terhingga. Ralat keabadian jisim digunakan sebagai pengukur kepada kejituan pengiraan berangka. Bagi menjamin hasil pengiraan keabadian jisim yang jitu, semua kamiran masa dijelmakan kepada ODE. Dengan jelmaan ini, kejituan pengiraan berangka hanya bergantung kepada pendiskretan ruang dan had terima yang digunakan dalam algoritma pengamiran ODE. Kesan pendiskretan ruang dan nilai had terima yang digunakan dalam penyelesaian ODE (TOL) terhadap ketepatan keputusan berangka dan masa pemprosesan komputer dikaji. Suatu sekaitan untuk mengganggar TOL dicadangkan. Walaupun kaedah OC memerlukan masa pengkomputeran yang lebih panjang, tetapi keputusan yang dihasilkan lebih jitu berbanding kaedah OCFE. Kaedah OC sesuai digunakan untuk projek masa depan kami seperti membangunkan ciri algoritma bagi proses berkitar. Kata kunci: Penjerapan buai tekanan deras; pemodelan; penyelakuan berangka; pemisahan udara The physically consistent rapid pressure swing adsorption (RPSA) models developed by Choong are solved numerically by spatially discretisating the partial differential equations (PDEs) to a system of ordinary differential equations (ODEs), which are then integrated over time. Two spatial discretisation methods are considered, i.e. the methods of orthogonal collocation (OC) and orthogonal collocation on finite elements (OCFE). The RPSA simulation programs are validated by simplifying the process models to compare the numerical results with similarity solutions obtained by Scott for air pressurisation and depressurisation into a semi–infinite adsorbing bed. The error in conservation of mass is computed as a guide to the numerical accuracy of the calculations. To ensure good accuracy in the calculation of conservation of mass, we transform all the time integrals into ODEs. With the transformation, the accuracy of the numerical calculations depends only on the spatial discretisation and the tolerance used in the ODE integration algorithm. The effect of the spatial discretisation and the value of TOL on the accuracy of the numerical results and the computer processing time is studied. A rule of thumb to estimate the value of TOL is proposed. The method of OC is found to give accuracy comparable to that of the method of OCFE, albeit requiring more computing time. We consider the method of OC sufficient for the purpose of our future work, i.e. to develop novel algorithm features for cyclic processes. Key words: Rapid pressure swing adsorption; modelling; numerical simulation; air separation

2008 ◽  
Vol 2 (1) ◽  
pp. 30
Author(s):  
Thomas S.Y Chong ◽  
William R. Paterson ◽  
David M. Scott

The work described here forms part of a project to model rapid pressure swing adsorption (RPSA), which is a single-bed process used for air separation. We have earlier identified a form of model and boundary conditions for an axially dispersed plug flow model that conserves mass. We solve the RPSA models numerically by spatially discretizing the partial differential equations to a system of ordinary differential equations (ODEs), which are then integrated over time. Although the formulation of our models conserves mass, our numerical simulations, however, do not perfectly conserve mass because of discretization error and rounding error. The discrepancy in the conservation of mass is computed as a guide to the numerical accuracy of the calculations. The computation of the conservation error requires the evaluation of time integrals of molar flowrates in and out of the bed. Since the velocity at the feed end of the bed changes rapidly with time, the application of quadrature to evaluate the time integrals does not provide the accuracy required. In this paper, the inadequacy is demonstrated using a simple problem, i.e. pressurization and depressurization into a non-adsorptive bed. An improved method is proposed. By transforming equations involving time integrals into ODEs, excellent accuracy is obtained. Further, this transformation minimizes the number of decision parameters that need to be specified by the users of the computer programs. Keywords: rapid pressure swing adsorption, modelling and simulation, packed bed.


Adsorption ◽  
1995 ◽  
Vol 1 (2) ◽  
pp. 153-164 ◽  
Author(s):  
A. S. T. Chiang ◽  
M. C. Hong

Sign in / Sign up

Export Citation Format

Share Document