An Artificial Neural Network Approach for Prediction of Bearing Capacity of Spread Foundations in Sand

2015 ◽  
Vol 72 (3) ◽  
Author(s):  
Ramli Nazir ◽  
Ehsan Momeni ◽  
Kadir Marsono ◽  
Harnedi Maizir

This study highlights the application of Back-Propagation (BP) feed forward Artificial Neural Network (ANN) as a tool for predicting bearing capacity of spread foundations in cohesionless soils. For network construction, a database of 75 recorded cases of full-scale axial compression load test on spread foundations in cohesionless soils was compiled from literatures. The database presents information about footing length (L), footing width (B), embedded depth of the footing (Df), average vertical effective stress of the soil at B/2 below footing (s΄), friction angle of the soil (f) and the ultimate axial bearing capacity (Qu). The last parameter was set as the desired output in the ANN model, while the rest were used as input of the ANN predictive model of bearing capacity. The prediction performance of ANN model was compared to that of Multi-Linear Regression analysis. Findings show that the proposed ANN model is a suitable tool for predicting bearing capacity of spread foundations. Coefficient of determination R2 equals to 0.98, strongly indicates that the ANN model exhibits a high degree of accuracy in predicting the axial bearing capacity of spread foundation. Using sensitivity analysis, it is concluded that the geometrical properties of the spread foundations (B and L) are the most influential parameters in the proposed predictive model of Qu.

2020 ◽  
Vol 10 (5) ◽  
pp. 1871 ◽  
Author(s):  
Tuan Anh Pham ◽  
Hai-Bang Ly ◽  
Van Quan Tran ◽  
Loi Van Giap ◽  
Huong-Lan Thi Vu ◽  
...  

Axial bearing capacity of piles is the most important parameter in pile foundation design. In this paper, artificial neural network (ANN) and random forest (RF) algorithms were utilized to predict the ultimate axial bearing capacity of driven piles. An unprecedented database containing 2314 driven pile static load test reports were gathered, including the pile diameter, length of pile segments, natural ground elevation, pile top elevation, guide pile segment stop driving elevation, pile tip elevation, average standard penetration test (SPT) value along the embedded length of pile, and average SPT blow counts at the tip of pile as input variables, whereas the ultimate load on pile top was considered as output variable. The dataset was divided into the training (70%) and testing (30%) parts for the construction and validation phases, respectively. Various error criteria, namely mean absolute error (MAE), root mean squared error (RMSE), and the coefficient of determination (R2) were used to evaluate the performance of RF and ANN algorithms. In addition, the predicted results of pile load tests were compared with five empirical equations derived from the literature and with classical multi-variable regression. The results showed that RF outperformed ANN and other methods. Sensitivity analysis was conducted to reveal that the average SPT value and pile tip elevation were the most important factors in predicting the axial bearing capacity of piles.


2020 ◽  
Vol 12 (10) ◽  
pp. 4001
Author(s):  
Sung-Sik Park ◽  
Peter D. Ogunjinmi ◽  
Seung-Wook Woo ◽  
Dong-Eun Lee

Conventionally, liquefaction-induced settlements have been predicted through numerical or analytical methods. In this study, a machine learning approach for predicting the liquefaction-induced settlement at Pohang was investigated. In particular, we examined the potential of an artificial neural network (ANN) algorithm to predict the earthquake-induced settlement at Pohang on the basis of standard penetration test (SPT) data. The performance of two ANN models for settlement prediction was studied and compared in terms of the R2 correlation. Model 1 (input parameters: unit weight, corrected SPT blow count, and cyclic stress ratio (CSR)) showed higher prediction accuracy than model 2 (input parameters: depth of the soil layer, corrected SPT blow count, and the CSR), and the difference in the R2 correlation between the models was about 0.12. Subsequently, an optimal ANN model was used to develop a simple predictive model equation, which was implemented using a matrix formulation. Finally, the liquefaction-induced settlement chart based on the predictive model equation was proposed, and the applicability of the chart was verified by comparing it with the interferometric synthetic aperture radar (InSAR) image.


2015 ◽  
Vol 19 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Ehsan Momeni ◽  
Ramli Nazir ◽  
Danial Jahed Armaghani ◽  
Harnedi Maizir

<p class="MsoNormal" style="text-align: justify; line-height: 200%;">Axial bearing capacity (ABC) of piles is usually determined by static load test (SLT). However, conducting SLT is costly and time-consuming. High strain dynamic pile testing (HSDPT) which is provided by pile driving analyzer (PDA) is a more recent approach for predicting the ABC of piles. In comparison to SLT, PDA test is quick and economical. Implementing feed forward back-propagation artificial neural network (ANN) for solving geotechnical problems has recently gained attention mainly due to its ability in finding complex nonlinear relationships among different parameters. In this study, an ANN-based predictive model for estimating ABC of piles and its distribution is proposed. For network construction purpose, 36 PDA tests were performed on various concrete piles in different project sites. The PDA results, pile geometrical characteristics as well as soil investigation data were used for training the ANN models. Findings indicate the feasibility of ANN in predicting ultimate, shaft and tip bearing resistances of piles. The coefficients of determination, R², equal to 0.941, 0.936, and 0.951 for testing data reveal that the shaft, tip and ultimate bearing capacities of piles predicted by ANN-based model are in close agreement with those of HSDPT. By using sensitivity analysis, it was found that the length and area of the piles are dominant factors in the proposed predictive model.</p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"> </p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"><strong>Resumen</strong></p><p class="MsoNormal" style="text-align: justify; line-height: 200%;">La Capacidad Axial de Soporte (ABC, en inglés) de un pilote de construcción se determina usualmente a través de una Prueba de Carga Estática (SLT, inglés). Sin embargo, estas pruebas son costosas y demandan tiempo. La evaluación de las Dinámicas de Alto Esfuerzo de Pilotes (HSDPT, inglés), que la provee el programa de Análisis de Excavación (PDA, inglés), es una forma de aproximación más reciente para preveer la Capacidad Axial de Soporte. En comparación con la Prueba de Cargas Estática, la evaluación PDA es rápida y económica. La implementación de Redes Neuronales Arficiales (ANN, en inglés) que permita resolver problemas geotécnicos ha ganado atención recientemente debido a su posibilidad de hallar relaciones no lineales entre los diferentes parámetros. En este estudio se propone un modelo predictivo ANN para estimar la Capacidad Axial de Soporte de pilotes y su distribución. Para fines de una red de construcción se realizaron 36 pruebas PDA en pilotes de diferentes proyectos. Los resultados de los Análisis de Excavación, las características geométricas de los pilotes, al igual que los datos de investigación del suelo se utilizaron para probar los modelos ANN. Los resultados indican la viabilidad del modelo ANN en predecir la resistencia de los pilotes. Los coeficientes de correlación, R², que alcanzaron 0.941, 09.36 y 0.951 para la evaluación de los datos, revelan que la capacidad del pilotaje en el último rodamiento, en el cojinete del eje y en la punta que se predijeron con el modelo ANN concuerda con las establecidas a través del HSDPT. A través del análisis de respuesta se determinó que la longitud y el área de los pilotes son factores dominantes en el modelo predictivo propuesto.</p>


2021 ◽  
Vol 48 (1) ◽  
pp. 9-21
Author(s):  
Mladenka Pestorić ◽  
Jasna Mastilović ◽  
Žarko Kevrešan ◽  
Lato Pezo ◽  
Miona Belović ◽  
...  

Sensory analysis is the best mean to precisely describe the eating quality of fresh foods. However, it is expensive and time-consuming method which cannot be used for measuring quality properties in real time. The aim of this paper was to contribute to the study of the relationship between sensory and instrumental data, and to define a proper model for predicting sensory properties of fresh tomato through the determination of the physicochemical properties. Principal Component Analysis (PCA) was applied to the experimental data to characterize and differentiate among the observed genotypes, explaining 73.52% of the total variance, using the first three principal components. Artificial neural network (ANN) model was used for the prediction of sensory properties based on the results obtained by basic chemical and instrumental determinations. The developed ANN model predicts the sensory properties with high adequacy, with the overall coefficient of determination of 0.859.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Şükrü Özşahin ◽  
Hilal Singer

In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for the wood industry to predict the gloss with less number of tiring experimental activities.


2012 ◽  
Vol 170-173 ◽  
pp. 1013-1016
Author(s):  
Fu Qiang Gao ◽  
Xiao Qiang Wang

Prediction of peak particle velocity (PPV) is very complicated due to the number of influencing parameters affecting seism wave propagation. In this paper, artificial neural network (ANN) is implemented to develop a model to predict PPV in a blasting operation. Based on the measured parameters of maximum explosive charge used per delay and distance between blast face to monitoring point, a three-layer ANN was found to be optimum with architecture 2-5-1. Through the analysis of coefficient of determination (CoD) and mean absolute error (MAE) between monitored and predicted values of PPV, it indicates that the forecast data by the ANN model is close to the actua1 values.


2021 ◽  
Vol 11 (15) ◽  
pp. 6996
Author(s):  
Youngsoo Song ◽  
Jihoon Wang

This study aims at the development of an artificial neural network (ANN) model to optimize relief well design in Pohang Basin, South Korea. Relief well design in carbon capture and geological storage (CCS) requires complex processes and excessive iterative procedures to obtain optimal operating parameters, such as CO2 injection rate, water production rate, distance between the wells, and pressure at the wells. To generate training and testing datasets for ANN model development, optimization processes for a relief well with various injection scenarios were performed. Training and testing were conducted, where the best iteration and regression were considered based on the calculated coefficient of determination (R2) and root mean square error (RMSE) values. According to validation with a 20-year injection scenario, which was not included in the training datasets, the model showed great performance with R2 values of 0.96 or higher for all the output parameters. In addition, the RMSE values for the BHP and the trapping mechanisms were lower than 0.04. Moreover, the location of the relief well was reliably predicted with a distance difference of only 20.1 m. The ANN model can be robust tool to optimize relief well design without a time-consuming reservoir simulations.


2020 ◽  
pp. 1051-1062
Author(s):  
Zaher JabbarAttwan AL Zirej ◽  
Hassan Abdul Hadi

The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).      An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.      The proposed artificial neural network method depends on obtaining the input data from drilling mud logging data and wireline logging data. The data then analyzes it to create an interconnection between the drilling variables and the rate of penetration.      The proposed ANN model consists of an input layer, hidden layer and outputs layer, while it applies the tangent function (TanH) as a learning and training algorithm in the hidden layer. Finally, the predicted values of ROP are compared with the measured values. The proposed ANN model is more efficient than the multiple regression analysis in predicting ROP. The obtained coefficient of determination (R2) values using the ANN technique are 0.93 and 0.91 for training and validation sets, respectively. This study presents a new model for predicting ROP values in comparison with other conventional drilling measurements.


Author(s):  
К. Т. Чин ◽  
Т. Арумугам ◽  
С. Каруппанан ◽  
М. Овинис

Описываются разработка и применение искусственной нейронной сети (ИНС) для прогнозирования предельного давления трубопровода с точечным коррозионным дефектом, подверженного воздействию только внутреннего давления. Модель ИНС разработана на основе данных, полученных по результатам множественных полномасштабных испытаний на разрыв труб API 5L (класс от X42 до X100). Качество работы модели ИНС проверено в сравнении с данными для обучения, получен коэффициент детерминации R = 0,99. Модель дополнительно протестирована с учетом данных о предельном давлении корродированных труб API 5L X52 и X80. Установлено, что разработанная модель ИНС позволяет прогнозировать предельное давление с приемлемой погрешностью. С использованием данной модели проведена оценка влияния длины и глубины коррозионных дефектов на предельное давление. Выявлено, что глубина коррозии является более значимым фактором разрушения корродированного трубопровода. This paper describes the development and application of artificial neural network (ANN) to predict the failure pressure of single corrosion affected pipes subjected to internal pressure only. The development of the ANN model is based on the results of sets of full-scale burst test data of pipe grades ranging from API 5L X42 to X100. The ANN model was developed using MATLAB’s Neural Network Toolbox with 1 hidden layer and 30 neurons. Before further deployment, the developed ANN model was compared against the training data and it produced a coefficient of determination ( R ) of 0.99. The developed ANN model was further tested against a set of failure pressure data of API 5L X52 and X80 grade corroded pipes. Results revealed that the developed ANN model is able to predict the failure pressure with good margins of error. Furthermore, the developed ANN model was used to determine the failure trends when corrosion defect length and depth were varied. Results from this failure trend analysis revealed that corrosion defect depth is the most significant parameter when it comes to corroded pipeline failure.


1997 ◽  
Vol 77 (3) ◽  
pp. 421-429 ◽  
Author(s):  
Chun-Chieh Yang ◽  
Shiv O. Prasher ◽  
Guy R. Mehuys

This study was undertaken to develop an artificial neural network (ANN) model for transient simulation of soil temperature at different depths in the profile. The capability of ANN models to simulate the variation of temperature in soils was investigated by considering readily available meteorologic parameters. The ANN model was constructed by using five years of meteorologic data, measured at a weather station at the Central Experimental Farm in Ottawa, Ontario, Canada. The model inputs consisted of daily rainfall, potential evapotranspiration, and the day of the year. The model outputs were daily soil temperatures at the depths of 100, 500 and 1500 mm. The estimated values were found to be close to the measured values, as shown by a root-mean-square error ranging from 0.59 to 1.82 °C, a standard deviation of errors from 0.61 to 1.81 °C, and a coefficient of determination from 0.937 to 0.987. Therefore, it is concluded that ANN models can be used to estimate soil temperature by considering routinely measured meteorologic parameters. In addition, the ANN model executes faster than a comparable conceptual simulation model by several orders of magnitude. Key words: Artificial neural networks, soil temperature, precipitation, potential evapotranspiration


Sign in / Sign up

Export Citation Format

Share Document