Quantitative Hazard Analysis for Landslides in Hulu Kelang area, Malaysia

2015 ◽  
Vol 73 (1) ◽  
Author(s):  
Nader Saadatkhah ◽  
Azman Kassim ◽  
Lee Min Lee ◽  
Gambo Haruna Yunusa

Hulu Kelang is a region in Malaysia which is very susceptible to landslides. From 1990 to 2011, a total of 28 major landslide events had been reported in this area. This paper evaluates and compares the probability-frequency ratio (FR), statistical index (Wi), and weighting factor (Wf), used for assessing landslide susceptibility in the study area. Eleven landslide influencing factors were considered in the analyses. These factors included lithology, land cover, curvature, slope inclination, slope aspect, drainage density, elevation, distance to lake and stream, distance to road and trenches and two indices (the stream power index (SPI) and the topographic wetness index (TWI)) found in the area. The accuracy of the maps produced from the three models was verified using a receiver operating characteristics (ROC). The verification results indicated that the probability-frequency ratio (FR) model which was developed quantitatively based on probabilistic analysis of spatial distribution of historical landslide events was capable of producing a more reliable landslide susceptibility map in this study area compared to its other counterparts. About 89% of the landslide locations have been predicted accurately by using the FR map. 

Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 995
Author(s):  
Okoli Jude Emeka ◽  
Haslinda Nahazanan ◽  
Bahareh Kalantar ◽  
Zailani Khuzaimah ◽  
Ojogbane Success Sani

A landslide is a significant environmental hazard that results in an enormous loss of lives and properties. Studies have revealed that rainfall, soil characteristics, and human errors, such as deforestation, are the leading causes of landslides, reducing soil water infiltration and increasing the water runoff of a slope. This paper introduces vegetation establishment as a low-cost, practical measure for slope reinforcement through the ground cover and the root of the vegetation. This study reveals the level of complexity of the terrain with regards to the evaluation of high and low stability areas and has produced a landslide susceptibility map. For this purpose, 12 conditioning factors, namely slope, aspect, elevation, curvature, hill shade, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distances to roads, distance to lakes, distance to trees, and build-up, were used through the analytic hierarchy process (AHP) model to produce landslide susceptibility map. Receiver operating characteristics (ROC) was used for validation of the results. The area under the curve (AUC) values obtained from the ROC method for the AHP model was 0.865. Four seed samples, namely ryegrass, rye corn, signal grass, and couch, were hydroseeded to determine the vegetation root and ground cover’s effectiveness on stabilization and reinforcement on a high-risk susceptible 65° slope between August and December 2020. The observed monthly vegetation root of couch grass gave the most acceptable result. With a spreading and creeping vegetation ground cover characteristic, ryegrass showed the most acceptable monthly result for vegetation ground cover effectiveness. The findings suggest that the selection of couch species over other species is justified based on landslide control benefits.


2021 ◽  
Vol 33 ◽  
Author(s):  
Mohammed El-Fengour ◽  
Hanifa El Motaki ◽  
Aissa El Bouzidi

This study aimed to assess landslide susceptibility in the Sahla watershed in northern Morocco. Landslides hazard is the most frequent phenomenon in this part of the state due to its mountainous precarious environment. The abundance of rainfall makes this area suffer mass movements led to a notable adverse impact on the nearby settlements and infrastructures. There were 93 identified landslide scars. Landslide inventories were collected from Google Earth image interpretations. They were prepared out of landslide events in the past, and future landslide occurrence was predicted by correlating landslide predisposing factors. In this paper, landslide inventories are divided into two groups, one for landslide training and the other for validation. The Landslide Susceptibility Map (LSM) is prepared by Logistic Regression (LR) Statistical Method. Lithology, stream density, land use, slope curvature, elevation, topographic wetness index, slope aspect, and slope angle were used as conditioning factors. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was employed to examine the performance of the model. In the analysis, the LR model results in 96% accuracy in the AUC. The LSM consists of the predicted landslide area. Hence it can be used to reduce the potential hazard linked with the landslides in the Sahla watershed area in Rif Mountains in northern Morocco.


2021 ◽  
Vol 30 (4) ◽  
pp. 683-691
Author(s):  
G. Kavitha ◽  
S. Anbazhagan ◽  
S. Mani

Landslides are among the most prevalent and harmful hazards. Assessment of landslide susceptibility zonation is an important task in reducing the losses of lifeand properties. The present study aims to demarcate the landslide prone areas along the Vathalmalai Ghat road section (VGR) using remote sensing and GIS techniques. In the first step, the landslide causative factors such as geology, geomorphology, slope, slope aspect, land use / land cover, drainage density, lineament density, road buffer and relative relief were assessed. All the factors were assigned to rank and weight based on the slope stability of the landslide susceptibility zones. Then the thematic maps were integrated using ArcGIS tool and landslide susceptibility zonation was obtained and classified into five categories ; very low, low, moderate, high and very high. The landslide susceptibility map is validated with R-index and landslide inventory data collected from the field using GPS measurement. The distribution of susceptibility zones is ; 16.5% located in very low, 28.70% in low, 24.70% in moderate, 19.90% in high and 10.20% in very high zones. The R-index indicated that about 64% landslide occurences correlated with high to very high landslide susceptiblity zones. The model validation indicated that the method adopted in this study is suitable for landslide disaster mapping and planning.


2015 ◽  
Vol 4 (2) ◽  
pp. 16-33 ◽  
Author(s):  
Halil Akıncı ◽  
Ayşe Yavuz Özalp ◽  
Mehmet Özalp ◽  
Sebahat Temuçin Kılıçer ◽  
Cem Kılıçoğlu ◽  
...  

Artvin is one of the provinces in Turkey where landslides occur most frequently. There have been numerous landslides characterized as natural disaster recorded across the province. The areas sensitive to landslides across the province should be identified in order to ensure people's safety, to take the necessary measures for reducing any devastating effects of landslides and to make the right decisions in respect to land use planning. In this study, the landslide susceptibility map of the Central district of Artvin was produced by using Bayesian probability model. Parameters including lithology, altitude, slope, aspect, plan and profile curvatures, soil depth, topographic wetness index, land cover, and proximity to the road and stream were used in landslide susceptibility analysis. The landslide susceptibility map produced in this study was validated using the receiver operating characteristics (ROC) based on area under curve (AUC) analysis. In addition, control landslide locations were used to validate the results of the landslide susceptibility map and the validation analysis resulted in 94.30% accuracy, a reliable outcome for this map that can be useful for general land use planning in Artvin.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 505 ◽  
Author(s):  
Thi Nguyen ◽  
Cheng-Chien Liu

This paper proposes a new approach of using the analytic hierarchy process (AHP), in which the AHP was combined with bivariate analysis and correlation statistics to evaluate the importance of the pairwise comparison. Instead of summarizing expert experience statistics to establish a scale, we then analyze the correlation between the properties of the related factors with the actual landslide data in the study area. In addition, correlation and dependence statistics are also used to analyze correlation coefficients of preparatory factors. The product of this research is a landslide susceptibility map (LSM) generated by five factors (slope, aspect, drainage density, lithology, and land-use) and pre-event landslides (Typhoon Kalmaegi events), and then validated by post-event landslides and new landslides occurring in during the events (Typhoon Kalmaegi and Typhoon Morakot). Validating the results by the binary classification method showed that the model has reasonable accuracy, such as 81.22% accurate interpretation for post-event landslides (Typhoon Kalmaegi), and 70.71% exact predictions for new landslides occurring during Typhoon Kalmaegi.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3590 ◽  
Author(s):  
Bui ◽  
Moayedi ◽  
Kalantar ◽  
Osouli ◽  
Gör ◽  
...  

In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized with an artificial neural network (ANN) to optimize its performance. A spatial database comprising 208 historical landslides, as well as 14 landslide conditioning factors—elevation, slope aspect, plan curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall—is prepared to develop the ANN and HHO–ANN predictive tools. Mean square error and mean absolute error criteria are defined to measure the performance error of the models, and area under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the generated susceptibility maps. The findings showed that the HHO algorithm effectively improved the performance of ANN in both recognizing (AUROCANN = 0.731 and AUROCHHO–ANN = 0.777) and predicting (AUROCANN = 0.720 and AUROCHHO–ANN = 0.773) the landslide pattern.


2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.


2021 ◽  
Vol 11 (1) ◽  
pp. 167-177
Author(s):  
Niraj Baral ◽  
Akhilesh Kumar Karna ◽  
Suraj Gautam

Landslides are the most common natural hazards in Nepal especially in the mountainous terrain. The existing topographical scenario, complex geological settings followed by the heavy rainfall in monsoon has contributed to a large number of landslide events in the Kaski district. In this study, landslide susceptibility was modeled with the consideration of twelve conditioning factors to landslides like slope, aspect, elevation, Curvature, geology, land-use, soil type, precipitation, road proximity, drainage proximity, and thrust proximity. A Google-earth-based landslide inventory map of 637 landslide locations was prepared using data from Disinventar, reports, and satellite image interpretation and was randomly subdivided into a training set (70%) with 446 Points and a test set with 191 points (30%). The relationship among the landslides and the conditioning factors were statistically evaluated through the use of Modified Frequency ratio analysis. The results from the analysis gave the highest Prediction rate (PR) of 6.77 for elevation followed by PR of 66.45 for geology and PR of 6.38 for the landcover. The analysis was then validated by calculating the Area Under a Curve (AUC) and the prediction rate was found to be 68.87%. The developed landslide susceptibility map is helpful for the locals and authorities in planning and applying different intervention measures in the Kaski District.


2016 ◽  
Vol 60 (4) ◽  
pp. 359-371 ◽  
Author(s):  
Gheorghe Roşian ◽  
Horváth Csaba ◽  
Réti Kinga-Olga ◽  
Cristian-Nicolae Boţan ◽  
Ionela Georgiana Gavrilă

Landslides are among the most destructive natural hazards in several regions. Here we summarize our findings regarding this phenomenon in the Transylvanian Plain (Romania) using two susceptibility models: the statistical index and the frequency ratio model. Using Esri's ArcGIS Raster Calculator tool we generated susceptibility maps by summarizing the following twelve landslide predisposition factors: lithology, soil type, fault distance, drainage network distance, roads distance, land use (Corrine Land Cover and NDVI), slope angle, aspect, elevation, plan curvature and soil erosion (RUSLE). The landslide susceptibility has been assessed by computing the values for each class of the predisposing factors and thus evaluating the distribution of the landslide zones within each factor, using Esri's Tabulate Area Tool. The extracted predisposing factors maps have then been re-classified on the basis of the computed values in a raster format. Finally, the landslide susceptibility map has been reclassified into five classes using Natural Breaks (Jenks) classification method. The model performance was assessed with Receiver Operating Characteristic (ROC) curve and the R-index. The models with high number of factors had the lowest accuracy (AUC values being <0.8). The best frequency ratio model (AUC = 0.884) contained only three factors (slope, aspect, elevation) while in the case of the statistical index model the best model (AUC = 0.879) contained four factors (slope, aspect, elevation and NDVI). A significant part (33%) of the study area is characterized by a high to very high degree of susceptibility for landslides.


2020 ◽  
Vol 9 (9) ◽  
pp. 553
Author(s):  
Halil Akinci ◽  
Cem Kilicoglu ◽  
Sedat Dogan

Natural disasters such as landslides often occur in the Eastern Black Sea region of Turkey owing to its geological, topographical, and climatic characteristics. Landslide events occur nearly every year in the Arhavi, Hopa, and Kemalpaşa districts located on the Black Sea coast in the Artvin province. In this study, the landslide susceptibility map of the Arhavi, Hopa, and Kemalpaşa districts was produced using the random forest (RF) model, which is widely used in the literature and yields more accurate results compared with other machine learning techniques. A total of 10 landslide-conditioning factors were considered for the susceptibility analysis, i.e., lithology, land cover, slope, aspect, elevation, curvature, topographic wetness index, and distances from faults, drainage networks, and roads. Furthermore, 70% of the landslides on the landslide inventory map were used for training, and the remaining 30% were used for validation. The RF-based model was validated using the area under the receiver operating characteristic (ROC) curve. Evaluation results indicated that the success and prediction rates of the model were 98.3% and 97.7%, respectively. Moreover, it was determined that incorrect land-use decisions, such as transforming forest areas into tea and hazelnut cultivation areas, induce the occurrence of landslides.


Sign in / Sign up

Export Citation Format

Share Document