IMPROVING CLASSIFICATION ACCURACY FOR NON-COMMUNICABLE DISEASE PREDICTION MODEL BASED ON SUPPORT VECTOR MACHINE

2015 ◽  
Vol 77 (18) ◽  
Author(s):  
Mohd. Khanapi Abd. Ghani ◽  
Daniel Hartono Sutanto

Over recent years, Non-communicable Disease (NCDs) is the high mortality rate in worldwide likely diabetes mellitus, cardiovascular diseases, liver and cancers. NCDs prediction model have problems such as redundant data, missing data, imbalance dataset and irrelevant attribute. This paper proposes a novel NCDs prediction model to improve accuracy. Our model comprisesk-means as clustering technique, Weight by SVM as feature selection technique and Support Vector Machine as classifier technique. The result shows that k-means + weight SVM + SVM improved the classification accuracy on most of all NCDs dataset (accuracy; AUC), likely Pima Indian Dataset (99.52; 0.999), Breast Cancer Diagnosis Dataset (98.85; 1.000), Breast Cancer Biopsy Dataset (97.71; 0.998), Colon Cancer (99.41; 1.000), ECG (98.33; 1.000), Liver Disorder (99.13; 0.998).The significant different performed by k-means + weight by SVM + SVM. In the time to come, we are expecting to better accuracy rate with another classifier such as Neural Network.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Na Liu ◽  
Jiang Shen ◽  
Man Xu ◽  
Dan Gan ◽  
Er-Shi Qi ◽  
...  

As one of the most prevalent cancers among women worldwide, breast cancer has attracted the most attention by researchers. It has been verified that an accurate and early detection of breast cancer can increase the chances for the patients to take the right treatment plan and survive for a long time. Nowadays, numerous classification methods have been utilized for breast cancer diagnosis. However, most of these classification models have concentrated on maximum the classification accuracy, failed to take into account the unequal misclassification costs for the breast cancer diagnosis. To the best of our knowledge, misclassifying the cancerous patient as non-cancerous has much higher cost compared to misclassifying the non-cancerous as cancerous. Consequently, in order to tackle this deficiency and further improve the classification accuracy of the breast cancer diagnosis, we propose an improved cost-sensitive support vector machine classifier (ICS-SVM) for the diagnosis of breast cancer. In the proposed approach, we take full account of unequal misclassification costs of breast cancer intelligent diagnosis and provide more reasonable results over previous works and conventional classification models. To evaluate the performance of the proposed approach, Wisconsin Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) breast cancer datasets obtained from the University of California at Irvine (UCI) machine learning repository have been studied. The experimental results demonstrate that the proposed hybrid algorithm outperforms all the existing methods. Promisingly, the proposed method can be regarded as a useful clinical tool for breast cancer diagnosis and could also be applied to other illness diagnosis.


Author(s):  
Yifeng Dou ◽  
Wentao Meng

As one of the most vulnerable cancers of women, the incidence rate of breast cancer in China is increasing at an annual rate of 3%, and the incidence is younger. Therefore, it is necessary to conduct research on the risk of breast cancer, including the cause of disease and the prediction of breast cancer risk based on historical data. Data based statistical learning is an important branch of modern computational intelligence technology. Using machine learning method to predict and judge unknown data provides a new idea for breast cancer diagnosis. In this paper, an improved optimization algorithm (GSP_SVM) is proposed by combining genetic algorithm, particle swarm optimization and simulated annealing with support vector machine algorithm. The results show that the classification accuracy, MCC, AUC and other indicators have reached a very high level. By comparing with other optimization algorithms, it can be seen that this method can provide effective support for decision-making of breast cancer auxiliary diagnosis, thus significantly improving the diagnosis efficiency of medical institutions. Finally, this paper also preliminarily explores the effect of applying this algorithm in detecting and classifying breast cancer in different periods, and discusses the application of this algorithm to multiple classifications by comparing it with other algorithms.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Seyed Reza Kamel ◽  
Reyhaneh YaghoubZadeh ◽  
Maryam Kheirabadi

Abstract One of the most common diseases among women is breast cancer, the early diagnosis of which is of paramount importance. Given the time-consuming nature of the diagnosis process of the disease, using new methods such as computer science is extremely important for early detection of the condition. Today, the main emphasis is on the science of data mining as one of the computer methods in the field of diagnosis. In the present study, we used data mining as a combination of feature selection method by Gray Wolf Optimization (GWO) and support vector machine (SVM), which is a new technique with high accuracy compared to other methods in this classification, to increase the accuracy of breast cancer diagnosis. The UCI dataset and functional parameters and various statistical criteria were applied to evaluate the proposed method and assess the validity of the results in MATLAB, respectively. Application of the proposed method increased the improvement of the evaluated criteria, which increased the accuracy of diagnosis by 27.68%, compared to former works in the field. As such, it could be concluded that the proposed method had a higher ability to diagnose breast cancer, compared to previous techniques.


Sign in / Sign up

Export Citation Format

Share Document