EFFECT OF CURING TIME ON THE PORE SIZE AND EFFECTIVE THICKNESS/POROSITY OF POLYESTER THIN FILM COMPOSITE NANOFILTRATION MEMBRANES
Polyester thin film composite nanofiltration membranes were synthesized on the polyethersulfone (PES) support via the interfacial polymerization between triethanolamine (TEOA) and trimesoyl chloride (TMC). Here we report the effect of curing time in the interfacial polymerization process on membrane properties like pore size and effective thickness/porosity. The membrane properties were determined based on the uncharged solute permeation test and the hypothetical mechanistic structure (pore size, effective thickness/porosity) was determined using Donnan steric pore flow model (DSPM). This study also provides information on the effect of curing time on water permeability. From the 2 minute point to 10 minute point, the membranes pore sizes were reduced and negligible changes to effective thickness/porosity suggest the occurrence of additional cross-linking reaction between aqueous and organic monomers.