scholarly journals The Effects of Whole Body Vibration Training on Some Biochemical Values in Terms of Osteoporosis Risk in Premenopausal Women

2018 ◽  
Vol 6 (4a) ◽  
pp. 9
Author(s):  
Nurcan Demirel ◽  
Fatih Kaya ◽  
Salih Pınar

The main purpose of the present study is to comparatively examine the effects of Whole body vibration (WBV) trainings on some biochemical bone-turnover markers (Beta-CTx, Osteocalcin) in terms of osteoporosis. Twenty-four sedentary women (mean age=37.12±1.84 years) participated in the study. The participants were randomly divided to 3 groups: whole body vibration exercise group (WBV, n=8), classical resistance exercise group (CR, n=8), and control group (CO, n=8). Vibration trainings and classical resistance trainings were applied in similar exercise models for major muscle groups three days a week for eight weeks, not on consecutive days but in the same contexts. Of biochemical values, Beta-CTx and Osteocalcin were analysed by using Cobas e 411 ECLIA (Electro Chem. Luminance Immune Assay) method before and after the eight-week exercise period. For intra-group comparisons paired-samples t-test, for inter-group comparisons one way ANOVA, and for multi-comparisons Tukey test were used. While a statistically significant difference was found between pretest posttest of Beta-CTx and Osteocalcin values of CR (p<.05), there was not a significant difference in WBV and CO groups (p>.05). A statistically significant difference was found between the groups in terms of pretest posttest biochemical value changes (Beta-CTx, Osteocalsin) of the participants (p<.05). As a result, eight-week WBV training in premenopausal women can be considered as safe in terms of biochemical values’ (Beta-CTx, Osteocalcin) remaining unchanged. On the other hand, CR training made significant changes on the values in question. Whether this change is an acute effect or not has become a raising question. This case can be studied in premenopausal women in further research.

2019 ◽  
Vol 9 (23) ◽  
pp. 5194 ◽  
Author(s):  
Cristiane Ribeiro Kütter ◽  
Eloá Moreira-Marconi ◽  
Ygor Teixeira-Silva ◽  
Marcia Cristina Moura-Fernandes ◽  
Alexandre Gonçalves de Meirelles ◽  
...  

Knee osteoarthritis (KOA) is a degenerative disease of the knee joint. This study aims to evaluate the effects of whole-body vibration (WBV), auriculotherapy (AT), and the association of these techniques with the functionality of KOA individuals. Individuals (n = 120) were allocated an AT group (GAT), a WBV group (GWBV), an association group (GWBV + AT), and their respective controls (CGAT, CGWBMV, CGWBMV + AT). The WBV intervention was performed with 5–14 Hz in 3 min of working time with 1 min rest. The control group performed the protocol with the vibrating platform (VP) turned off. The AT intervention was performed with adhesive tapes, with seeds placed in the both ears on the Shenmen point, knee joint, and kidney. The control groups had seedless tape placed on both ears. The participants were instructed to press the adhesive tapes with the fingers three times per day (for 6 days) and to remove the adhesive tapes on the seventh day, before returning to the laboratory. The International Knee Documentation Committee (IKDC), the short physical performance battery (SPPB), and the anterior trunk flexibility (ATF) tests were applied. Acute and cumulative effects were determined. In first session (acute effect of the first session), significant improvements were observed in the groups GWBV (p = 0.03) and GWBV + AT (p = 0.04), and in the cumulative effect a significant improvement was observed in the groups GWBV (p = 0.02) and GWBV + AT (p = 0.01). Concerning the overall score of the SPPB, significant improvements were observed in the individuals of the GWBV (p = 0.01) and GWBV + AT (p = 0.03) groups (cumulative effect). No changes were found in the score for the IKDC. The WBV alone or associated with AT, besides being a safe and feasible strategy, likely produces physiological responses that improve the functionality of KOA individuals, considering the findings of the ATF and the score of the SPPB.


Dose-Response ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. 155932581880213 ◽  
Author(s):  
D.C. Sá-Caputo ◽  
L.L. Paineiras-Domingos ◽  
Ricardo Oliveira ◽  
Mario F.T. Neves ◽  
Andrea Brandão ◽  
...  

The aim of the study was to assess the acute effect of whole-body vibration (WBV) exercise, with low frequency (5 Hz), on the pain level (PL), trunk flexibility, and cardiovascular responses (blood pressure [BP] and heart rate [HR]) in individuals with metabolic syndrome (MetS). Forty-four individuals were included in the study (control: 15) or in (WBV exercise: 29) groups. They were submitted to 3 bouts (1 minute each) of WBV exercise (5 Hz and peak-to-peak displacements of 2.5, 5.0, and 7.5 mm, corresponding to peak accelerations of 0.12, 0.25, and 0.35 g, respectively, sitting in a chair with the feet on the platform with knees flexed, followed by 1 minute of interset rest. The Control Group performed the same protocol, but the platform was turned off. The PL was measured through the visual analog pain scale, and the flexibility was measured through the anterior trunk flexion test. Significant improvements on PL ( P = .031) and flexibility ( P = .004) were found only in the WBV exercise group. The BP and HR remained at physiological levels. In conclusion, the WBV exercise would lead to physiological response decreasing PL and increasing flexibility as well as maintaining the cardiovascular responses in individuals with MetS.


Author(s):  
Festus A. Adegoju ◽  
Joseph Kolawole Abon ◽  
Francis Olatomirin

Several studies have attempted to identify adequate recovery strategies for athletes. But only paucity or none of such studies has been accessed which investigated long term effects of whole body vibration (WBV) as a recovery technique regimen before, during and after performance. This study was carried out to investigate the effect of whole body vibration training on selected performance-related physical fitness components of players in the University of Ibadan football team, Ibadan, Nigeria. The study was carried out using pretest/posttest/control group experimental research design. The sample size for this study was twenty participants. The participants were placed into experimental groups, who undertook eight weeks of whole body vibration training, and a control group who involved in their normal daily training regimen without the use of WBV for eight weeks. Two research questions were answered while four hypotheses were tested. Descriptive statistics of mean, percentages, chats and inferential statistics of analysis of covariance (ANCOVA) were used to test all hypotheses at 0.05 alpha levels of significance. The results of the study showed a significant difference in the pretest and posttest scores of players in leg power (F(1, 18) =10.047; p<0.05; ƞ2=.137) and balance (F(1, 18) =19.317; p<0.05; ƞ2=.327) but no significant difference in agility(F(1, 18) =1.3923; p>0.05; ƞ2=.031) and speed (F(1, 18) =1.006; p>0.05; ƞ2=.062). Two hypotheses were rejected and two were not rejected. The results of this study help to conclude that whole body vibration training significantly improved the leg power and balance recovery of the participants but did not significantly improve agility and speed of the participants. It was therefore recommended that football coaches should incorporate whole body vibration training into their training programme as leg power and balance are essential fitness components needed to play the game of football. <p> </p><p><strong> Article visualizations:</strong></p><p><img src="/-counters-/edu_01/0720/a.php" alt="Hit counter" /></p>


Author(s):  
José Antonio Mingorance ◽  
Pedro Montoya ◽  
José García Vivas Miranda ◽  
Inmaculada Riquelme

Whole body vibration has been proven to improve the health status of patients with fibromyalgia, providing an activation of the neuromuscular spindles, which are responsible for muscle contraction. The present study aimed to compare the effectiveness of two types of whole body vibrating platforms (vertical and rotational) during a 12-week training program. Sixty fibromyalgia patients (90% were women) were randomly assigned to one of the following groups: group A (n = 20), who performed the vibration training with a vertical platform; group B (n = 20), who did rotational platform training; or a control group C (n = 20), who did not do any training. Sensitivity measures (pressure pain and vibration thresholds), quality of life (Quality of Life Index), motor function tasks (Berg Scale, six-minute walking test, isometric back muscle strength), and static and dynamic balance (Romberg test and gait analysis) were assessed before, immediately after, and three months after the therapy program. Although both types of vibration appeared to have beneficial effects with respect to the control group, the training was more effective with the rotational than with vertical platform in some parameters, such as vibration thresholds (p < 0.001), motor function tasks (p < 0.001), mediolateral sway (p < 0.001), and gait speed (p < 0.05). Nevertheless, improvements disappeared in the follow-up in both types of vibration. Our study points out greater benefits with the use of rotational rather than vertical whole body vibration. The use of the rotational modality is recommended in the standard therapy program for patients with fibromyalgia. Due to the fact that the positive effects of both types of vibration disappeared during the follow-up, continuous or intermittent use is recommended.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Rania G. Hegazy ◽  
Amr Almaz Abdel-aziem ◽  
Eman I. El Hadidy ◽  
Yosra M. Ali

Abstract Background Hemiplegic cerebral palsy (CP) enormously affects the quadriceps and hamstring muscles. It causes weakness in the affected lower-extremity muscles in addition to muscle imbalance and inadequate power production, especially in the ankle plantar-flexor and knee extensor muscles. It also causes anomalous delayed myoelectrical action of the medial hamstring. A whole-body vibration (WBV) exercise can diminish muscle spasticity and improve walking speed, muscle strength, and gross motor function without causing unfavorable impacts in adults suffering from CP. Thus, the aim of this study is to investigate the impacts of WBV training associated with conventional physical therapy on the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP. Results The post-intervention values of the quadriceps and hamstring muscle force, endurance, and power were significantly higher than the pre-intervention values for both groups (p = 0.001). The post-intervention values of the study group were significantly higher than the control group (quadriceps force, p = 0.015; hamstring force, p = 0.030; endurance, p = 0.025; power, p = 0.014). Conclusion The 8 weeks of WBV training that was added to traditional physical therapy was more successful in improving the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP when compared to traditional physical therapy alone.


2013 ◽  
Vol 109 (11) ◽  
pp. 2705-2711 ◽  
Author(s):  
M. Bączyk ◽  
A. Hałuszka ◽  
W. Mrówczyński ◽  
J. Celichowski ◽  
P. Krutki

The study aimed at determining the influence of a whole body vibration (WBV) on electrophysiological properties of spinal motoneurons. The WBV training was performed on adult male Wistar rats, 5 days a week, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Motoneuron properties were investigated intracellularly during experiments on deeply anesthetized animals. The experimental group subjected to the WBV consisted of seven rats, and the control group of nine rats. The WBV treatment induced no significant changes in the passive membrane properties of motoneurons. However, the WBV-evoked adaptations in excitability and firing properties were observed, and they were limited to fast-type motoneurons. A significant decrease in rheobase current and a decrease in the minimum and the maximum currents required to evoke steady-state firing in motoneurons were revealed. These changes resulted in a leftward shift of the frequency-current relationship, combined with an increase in slope of this curve. The functional relevance of the described adaptive changes is the ability of fast motoneurons of rats subjected to the WBV to produce series of action potentials at higher frequencies in a response to the same intensity of activation. Previous studies proved that WBV induces changes in the contractile parameters predominantly of fast motor units (MUs). The data obtained in our experiment shed a new light to possible explanation of these results, suggesting that neuronal factors also play a substantial role in MU adaptation.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
P. S. C. Gomes ◽  
M. O. Campos ◽  
L. F. Oliveira ◽  
R. G. T. Mello ◽  
I. A. Fernandes

Objective. This study investigated the acute residual effects induced by different frequencies of whole-body vibration (WBV) on postural control of elderly women. Design. Thirty physically active elderly women (67±5 years) were randomly divided into three groups: two experimental groups (high WBV frequency: 45 Hz and 4 mm amplitude, n=10; low WBV frequency: 30 Hz and 4 mm amplitude, n=10) and one control group (n=10), with no treatment. The participants were first subjected to stabilometry tests and were then guided through three sets of isometric partial squats for 60 s while the WBV stimulation was applied. The control group was subjected to the same conditions but without the WBV stimulation. The participants were again subjected to body balance tests immediately following the end of the intervention period and again at 8, 16, and 24 min. To measure body sway control, three 60 s tests were performed at 10 s intervals for each of the following experimental conditions: (1) eyes opened and (2) eyes closed. The following variables were investigated: the average velocity of the displacement of the centre of pressure in the anterior-posterior and medial-lateral planes as well as in the elliptical area. Results. A 3 (condition) × 5 (test) two-way repeated-measures ANOVA did not identify significant differences in the stabilometric variables, regardless of group, time, or experimental condition. Conclusions. The effect of WBV, regardless of the stimulation frequency, did not have a significant effect immediately after or up to 24 minutes after vibration cessation, on the variables involved in the control of postural stability in physically active elderly women.


Medicina ◽  
2020 ◽  
Vol 56 (9) ◽  
pp. 457
Author(s):  
Milad Etemadi Sh ◽  
Nan-Chen Hsieh ◽  
Seyed Shahin Movahed Mohammadi ◽  
Shahrooz Momeni ◽  
Seyed Mohammad Razavi ◽  
...  

Background and Objectives: Mechanical stimulation can improve the structural properties of the fracture site and induce the differentiation of different cell types for bone regeneration. This study aimed to compare the effect of low-intensity pulsed ultrasound stimulation (LIPUS) versus whole body vibration (WBV) on healing of mandibular bone defects. Materials and Methods: A mandibular defect was created in 66 rats. The rats were randomly divided into two groups of rats. Each group was subdivided randomly by three groups (n = 11) as follows: (I) control group, (II) treatment with LIPUS, and (III) treatment with WBV. The radiographic changes in bone density, the ratio of lamellar bone to the entire bone volume, the ratio of the newly formed bone to the connective tissue and inflammation grade were evaluated after 1 and 2 months. Results: LIPUS significantly increased the radiographic bone density change compared to the control group at the first and second month postoperatively (p < 0.01). WBV only significantly increased the bone density compared to the control group at the second month after the surgery (p < 0.01). Conclusions: Application of LIPUS and WBV may enhance the regeneration of mandibular bone defects in rats. Although LIPUS and WBV are effective in mandibular bone healing, the effects of LIPUS are faster and greater than WBV.


Sign in / Sign up

Export Citation Format

Share Document