A Polynomial Invariant of Graphs On Orientable Surfaces

2001 ◽  
Vol 83 (3) ◽  
pp. 513-531 ◽  
Author(s):  
Béla Bollobás ◽  
Oliver Riordan
2018 ◽  
Vol 27 (6) ◽  
pp. 913-945 ◽  
Author(s):  
ANDREW GOODALL ◽  
THOMAS KRAJEWSKI ◽  
GUUS REGTS ◽  
LLUÍS VENA

We follow the example of Tutte in his construction of the dichromate of a graph (i.e. the Tutte polynomial) as a unification of the chromatic polynomial and the flow polynomial in order to construct a new polynomial invariant of maps (graphs embedded in orientable surfaces). We call this the surface Tutte polynomial. The surface Tutte polynomial of a map contains the Las Vergnas polynomial, the Bollobás–Riordan polynomial and the Krushkal polynomial as specializations. By construction, the surface Tutte polynomial includes among its evaluations the number of local tensions and local flows taking values in any given finite group. Other evaluations include the number of quasi-forests.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 215
Author(s):  
Catarina Mendes de Jesus S. ◽  
Pantaleón D. Romero

In this paper, we will consider the problem of constructing stable maps between two closed orientable surfaces M and N with a given branch set of curves immersed on N. We will study, from a global point of view, the behavior of its families in different isotopies classes on the space of smooth maps. The main goal is to obtain different relationships between invariants. We will provide a new proof of Quine’s Theorem.


2013 ◽  
Vol 24 (01) ◽  
pp. 1250126 ◽  
Author(s):  
SEUNG-MOON HONG

We consider two approaches to isotopy invariants of oriented links: one from ribbon categories and the other from generalized Yang–Baxter (gYB) operators with appropriate enhancements. The gYB-operators we consider are obtained from so-called gYBE objects following a procedure of Kitaev and Wang. We show that the enhancement of these gYB-operators is canonically related to the twist structure in ribbon categories from which the operators are produced. If a gYB-operator is obtained from a ribbon category, it is reasonable to expect that two approaches would result in the same invariant. We prove that indeed the two link invariants are the same after normalizations. As examples, we study a new family of gYB-operators which is obtained from the ribbon fusion categories SO (N)2, where N is an odd integer. These operators are given by 8 × 8 matrices with the parameter N and the link invariants are specializations of the two-variable Kauffman polynomial invariant F.


2021 ◽  
Author(s):  
Catarina Mendes de Jesus ◽  
Erica Boizan Batista ◽  
João Carlos Ferreira Costa
Keyword(s):  

2019 ◽  
Vol 383 (8) ◽  
pp. 707-717 ◽  
Author(s):  
M.A. Jafarizadeh ◽  
M. Yahyavi ◽  
N. Karimi ◽  
A. Heshmati

Sign in / Sign up

Export Citation Format

Share Document