scholarly journals Large Eddy Simulation of Lean Mixed-Mode Combustion Assisted by Partial Fuel Stratification in a Spark-Ignition Engine

2021 ◽  
Author(s):  
Chao Xu ◽  
Magnus Sj\xf6berg ◽  
Sibendu Som
2021 ◽  
pp. 1-15
Author(s):  
Chao Xu ◽  
Sibendu Som ◽  
Magnus Sjoberg

Abstract Partial fuel stratification (PFS) is a promising fuel injection strategy to improve the stability of lean combustion by applying a small pilot injection near spark timing. Mixed-mode combustion, which makes use of end-gas autoignition following conventional deflagration-based combustion, can be further utilized to speed up the overall combustion. In this study, PFS assisted mixed-mode combustion in a lean-burn direct injection spark-ignition (DISI) engine is numerically investigated using multi-cycle large eddy simulation (LES). A previously developed hybrid G-equation/well-stirred reactor combustion model is extended to the PFS condition. The experimental spray morphology is employed to derive spray model parameters for the pilot injection. The LES based model is validated against experimental data and is further compared with the Reynolds-averaged Navier-Stokes (RANS) based model. Overall, both RANS and LES predict the mean pressure and heat release rate traces well, while LES outperforms RANS in capturing the CCV and the combustion phasing in the mass burned space. Liquid and vapor penetrations obtained from the simulations agree reasonably well with the experiment. Detailed flame structures predicted from the simulations reveal the transition from a sooting diffusion flame to a lean premixed flame, which is consistent with experimental findings. LES captures more wrinkled and stretched flames than RANS. Finally, the LES model is employed to investigate the impacts of fuel properties, including heat of vaporization (HoV) and laminar burning speed (SL). Combustion phasing is found more sensitive to SL than to HoV, with a larger fuel property sensitivity of the heat release rate from autoignition than that from deflagration. Moreover, the combustion phasing in the PFS-assisted operation is shown to be less sensitive to SL compared with the well-mixed operation.


Author(s):  
Chao Xu ◽  
Sibendu Som ◽  
Magnus Sjöberg

Abstract Lean operation is beneficial to spark-ignition engines due to the high thermal efficiency compared with conventional stoichiometric operation. Lean combustion can be significantly stabilized by the partial fuel stratification (PFS) strategy, in which a small amount of pilot injection is applied near the spark energizing timing in addition to main injections during intake. Furthermore, mixed-mode combustion, which makes use of end-gas autoignition following conventional deflagration-based combustion, can be further utilized to speed up the overall combustion. In this study, PFS-assisted mixed-mode combustion in a lean-burn direct injection spark-ignition (DISI) engine is numerically investigated using multi-cycle large eddy simulation (LES). To accurately represent the pilot injection characteristics, experimentally-derived spray morphology parameters are employed for spray modeling. A previously developed hybrid G-equation/well-stirred reactor model is extended to PFS conditions, to capture interactions of pilot injection, turbulent flame propagation and end-gas autoignition. The LES-based engine model is compared with Reynolds-averaged Navier-Stokes (RANS) based model, allowing an investigation of both mean and cycle-to-cycle variation (CCV) of combustion characteristics. Instantaneous spray and flame structures from simulations are compared with experiments. The LES-based model is finally leveraged to investigate impacts of fuel properties including heat of vaporization (HoV) and laminar flame speed (SL). It is shown that overall, the predicted mean pressure and heat release rate traces from both RANS and LES agree well with the experiment, while LES captures the CCV and the combustion phasing in the mass burned space much better than RANS. Predicted liquid fuel penetrations agree reasonably well with the experiment, both for RANS and LES. Detailed flame structures in the simulations also reveal the transition from a sooting flame to a lean premixed flame, which is consistent with experimental findings. LES is shown to capture more wrinkled and stretched flame fronts than RANS. Local sensitivity analysis further identifies the stronger combustion phasing sensitivity to SL compared with that to HoV, and the stronger sensitivity of autoignition heat release rate than deflagration. The results from this study demonstrate the high fidelity of the developed computational model based on LES, enabling future investigation of PFS-assisted mixed-mode combustion for different fuels and a wider range of operating conditions.


Author(s):  
Y. See ◽  
M. Wang ◽  
J. Bohbot ◽  
O. Colin

Abstract The Species-Based Extended Coherent Flamelet Model (SB-ECFM) was developed and previously validated for 3D Reynolds-Averaged Navier-Stokes (RANS) modeling of a spark-ignited gasoline direct injection engine. In this work, we seek to extend the SB-ECFM model to the large eddy simulation (LES) framework and validate the model in a homogeneous charge spark-ignited engine. In the SB-ECFM, which is a recently developed improvement of the ECFM, the progress variable is defined as a function of real species instead of tracer species. This adjustment alleviates discrepancies that may arise when the numerical treatment of real species is different than that of the tracer species. Furthermore, the species-based formulation also allows for the use of second-order numeric, which can be necessary in LES cases. The transparent combustion chamber (TCC) engine is the configuration used here for validating the SB-ECFM. It has been extensively characterized with detailed experimental measurements and the data are widely available for model benchmarking. Moreover, several of the boundary conditions leading to the engine are also measured experimentally. These measurements are used in the corresponding computational setup of LES calculations with SB-ECFM. Since the engine is spark ignited, the Imposed Stretch Spark Ignition Model (ISSIM) is utilized to model this physical process. The mesh for the current study is based on a configuration that has been validated in a previous LES study of the corresponding motored setup of the TCC engine. However, this mesh was constructed without considering the additional cells needed to sufficiently resolve the flame for the fired case. Thus, it is enhanced with value-based Adaptive Mesh Refinement (AMR) on the progress variable to better capture the flame front in the fired case. As one facet of model validation, the ensemble average of the measured cylinder pressure is compared against the LES/SB-ECFM prediction. Secondly, the predicted cycle-to-cycle variation by LES is compared with the variation measured in the experimental setup. To this end, the LES computation is required to span a sufficient number of engine cycles to provide statistical convergence to evaluate the coefficient of variation (COV) in peak cylinder pressure. Due to the higher computational cost of LES, the runtime required to compute a sufficient number of engine cycles sequentially can be intractable. The concurrent perturbation method (CPM) is deployed in this study to obtain the required number of cycles in a reasonable time frame. Lastly, previous numerical and experimental analyses of the TCC engine have shown that the flow dynamics at the time of ignition is correlated with the cycle-to-cycle variability. Hence, similar analysis is performed on the current simulation results to determine if this correlation effect is well-captured by the current modeling approach.


2018 ◽  
Vol 20 (7) ◽  
pp. 765-776 ◽  
Author(s):  
Anthony Robert ◽  
Karine Truffin ◽  
Nicolas Iafrate ◽  
Stephane Jay ◽  
Olivier Colin ◽  
...  

Downsized spark ignition engines running under high loads have become more and more attractive for car manufacturers because of their increased thermal efficiency and lower CO2 emissions. However, the occurrence of abnormal combustions promoted by the thermodynamic conditions encountered in such engines limits their practical operating range, especially in high efficiency and low fuel consumption regions. One of the main abnormal combustion is knock, which corresponds to an auto-ignition of end gases during the flame propagation initiated by the spark plug. Knock generates pressure waves which can have long-term damages on the engine, that is why the aim for car manufacturers is to better understand and predict knock appearance. However, an experimental study of such recurrent but non-cyclic phenomena is very complex, and these difficulties motivate the use of computational fluid dynamics for better understanding them. In the present article, large-eddy simulation (LES) is used as it is able to represent the instantaneous engine behavior and thus to quantitatively capture cyclic variability and knock. The proposed study focuses on the large-eddy simulation analysis of knock for a direct injection spark ignition engine. A spark timing sweep available in the experimental database is simulated, and 15 LES cycles were performed for each spark timing. Wall temperatures, which are a first-order parameter for knock prediction, are obtained using a conjugate heat transfer study. Present work points out that LES is able to describe the in-cylinder pressure envelope whatever the spark timing, even if the sample of LES cycles is limited compared to the 500 cycles recorded in the engine test bench. The influence of direct injection and equivalence ratio stratifications on combustion is also (MAPO) analyzed. Finally, focusing on knock, a Maximum Amplitude Pressure Oscillation analysis (MAPO) is conducted for both experimental and numerical pressure traces pointing out that LES well reproduces experimental knock tendencies.


Sign in / Sign up

Export Citation Format

Share Document