The TransAlta High-Energy Piping Program—A Five-Year History

2000 ◽  
Vol 123 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Marvin J. Cohn,

In 1995, the High-Energy Piping Strategic Management Plan (HEPSMP) was initiated at TransAlta Utilities Corporation (TAU) for the three generating facilities. At that time, it was recognized that several of the piping systems were exhibiting signs of creep relaxation, with some hangers bottomed or topped out online and/or offline. Previous hanger adjustment attempts were not always adequate. The program workscope included: 1) hot and cold piping system walkdowns, 2) selection of high-priority girth weld inspection locations, 3) examination of critical weldments, 4) weld repairs where necessary, 5) adjustments or modifications of malfunctioning steam line hangers, and 6) recommended work for future scheduled outages. Prior to 1996, examination locations were limited to the traditional locations of the terminal points at the boiler and turbine, with reexaminations occurring at arbitrary intervals. Since the terminal points are not necessarily the most highly stressed welds causing service-related creep damage, service damage may not occur first at the pre-1996 examined locations. There was a need to maximize the safety and integrity of these lines by ensuring that the highest risk welds were identified and given the highest priority for examination. An engineering consulting company was selected to prioritize the highest risk weldments for each piping system. This risk-based methodology included the prediction and evaluation of actual sustained loads, thermal expansion loads, operating loads, multiaxial stresses, creep relaxation, and cumulative creep life exhaustion. The technical process included detailed piping system walkdowns and application of advanced analytical techniques to predict and rank creep/fatigue damage for each piping system. TAU has concluded that the program has met its objective of successfully prioritizing inspection locations. The approach has also resulted in reducing the scope and cost of reexaminations. Phases 1 and 2 evaluations and examinations have been completed for all units. Results of some of the important aspects of this program are provided as case history studies.

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Marvin J. Cohn ◽  
Fatma G. Faham ◽  
Dipak Patel

A high-energy piping (HEP) asset integrity management program is important for the safety of plant personnel and reliability of the fossil plant generating unit. HEP weldment failures have resulted in serious injuries, fatalities, extensive damage of components, and significant lost generation. The main steam (MS) piping system is one of the most critical HEP systems. Creep damage assessment in MS piping systems should include the evaluation of multiaxial stresses associated with field conditions and significant anomalies, such as malfunctioning supports and significant displacement interferences. This paper presents empirical data illustrating that the most critical girth welds of MS piping systems have creep failures which can be successfully ranked by a multiaxial stress parameter, such as maximum principal stress. Inelastic (redistributed) stresses at the piping outside diameter (OD) surface were evaluated for the base metal of three MS piping systems at the piping analysis model nodes. The range of piping system stresses at the piping nodes for each piping system was determined for the redistributed creep stress condition. The range of piping stresses was subsequently included on a Larson–Miller parameter (LMP) plot for the grade P22 material, revealing the few critical (lead-the-fleet) girth welds selected for nondestructive examination (NDE). In the three MS piping systems, the stress ranges varied from 55% to 80%, with only a few locations at stresses beyond the 65 percentile of the range. By including evaluations of significant field anomalies and the redistributed multiaxial stresses on the outside surface, it was shown that there is a good correlation of the ranked redistributed multiaxial stresses to the observed creep damage. This process also revealed that a large number of MS piping girth welds have insufficient applied stresses to develop substantial creep damage within the expected unit lifetime (assuming no major fabrication defects). This study also provided a comparison of the results of a conventional American Society of Mechanical Engineers (ASME) B31.1 Code as-designed sustained stress analysis versus the redistributed maximum principal stresses in the as-found (current) condition for a complete set of MS piping system nodes. The evaluations of redistributed maximum principal stresses in the as-found condition were useful in selecting high priority ranked girth weldment creep damage locations. The evaluations of B31.1 Code as-designed sustained load stresses were not useful in selecting high priority creep damage locations.


2000 ◽  
Vol 122 (4) ◽  
pp. 488-493 ◽  
Author(s):  
Raymond K. Yee ◽  
Marvin J. Cohn

The analysis of the elastic stresses in high-energy piping systems is a routine calculation in the power and petrochemical industries. The American Society of Mechanical Engineers (ASME) B31.1 Power Piping Code was developed for safe design and construction of pressure piping. Postconstruction issues, such as stress relaxation effects and selection of maximum expected creep damage locations, are not addressed in the Code. It has been expensive and time consuming to evaluate creep relaxation stresses in high energy piping systems, such as main steam and hot reheat piping. After prolonged operation of high-energy piping systems at elevated temperatures, it is very difficult to evaluate the redistribution of stresses due to dead weight, pressure, external loading, and thermal loading. The evaluation of stress relaxation and redistribution is especially important when nonideal conditions, such as bottomed-out or topped-out hangers, exist in piping systems. This paper uses three-dimensional four-node quadrilateral shell elements in the ABAQUS finite element code to evaluate the time for relaxation and the nominal relaxation stress values for a portion of a typical high-energy piping system subject to an ideally loaded hanger or to an overloaded hanger. The stress relaxation results are evaluated to suggest an approximation using elastic stress analysis results. [S0094-9930(00)01304-4]


1990 ◽  
Vol 112 (3) ◽  
pp. 260-265 ◽  
Author(s):  
M. J. Cohn

Fossil power plant high-energy piping systems operated at high temperatures are subject to creep damage, which is a time-dependent phenomenon. Traditional guidelines, such as the American Society of Mechanical Engineers (ASME) B31.1 Power Piping Code, were developed for plants having design lives in the 25–30 yr regime. Since many of these systems are being operated beyond 200,000 hr, it is important to reconsider the methodology of creep damage analysis to assure reliable long-term operation. Seven high-energy piping systems were evaluated in this study. The analysis of a minimum piping system life due to creep considered two approaches. The first approach used the traditional ASME B31.1 flexibility analysis guidelines. The second approach considered more detailed multiaxial stress state types of evaluations. The various equivalent stress methods used all six load components from the flexibility analysis. In nearly every case, the equivalent stress methods predicted significantly higher stresses. Consequently, the equivalent stress methodology results in 14 to 97 percent lower time to rupture values as compared to the values predicted using ASME B31.1 stresses.


2021 ◽  
Author(s):  
Peter Jackson ◽  
Robert Rosario ◽  
Andreas Fabricius ◽  
Anita Johny ◽  
Alexandria Wholey

Abstract We will present the results from several projects from the USA and other jurisdictions where ASME B31.1 Ch. VII O&M Covered Piping System (CPS) Programs have been implemented at several types of natural gas-fired CCGT plants. Common elements of programs for different plants will be summarized as well as plant-specific considerations for high energy piping condition assessment for newer plants. Pros and cons between a common program for a thermal fleet and plant-specific programs will be discussed including advantages and disadvantages of each approach. Effective implementation of parts of the Nonmandatory Appendix V guidance within the CPS Program will be described and recommendations for best practices. A brief overview of degradation-specific mechanisms for high energy piping and approaches for planninng/scheduling NDE inspections will be described. This overview will include: creep, fatigue, corrosion (erosion-corrosion - E/C and flow accelerated corrosion - FAC) as well as mechanisms that are commonly responsible for high energy piping leaks, failures and repairs including thermal quench cracking of HRSG interstage, terminal desuperheaters and turbine bypass attemperators. A brief summary of Gr. 91 inspection planning in Ch. VII O&M Programs will also be included as well as corrosion under insulation (CUI) and common inspection scopes for high temperature steam drains. Resolution of constant force and variable spring pipe supports on high pressure/high temperature piping that are not accommodating thermal expansion as per their engineering design can be evaluated using pre-outage pipe stress models and data obtained from field walkdowns to support rapid decisions for repair/replacement in the field. Finally, experiences with long term scheduling the need for adaptive management of the CPS Programs will be summarized with typical management oversight actions described for effective implementation.


Author(s):  
Marvin J. Cohn

Conventional United States designs of high energy piping (HEP) systems use the American Society of Mechanical Engineers (ASME) B31.1 Power Piping Code. The analytical methodology in this code is based on linear elastic beam theory. The ASME B31.1-2010 Power Piping Code (Code) [1] recommends Equation 15 to calculate the piping stress due to sustained loads. Many practitioners believe that the sustained load stress (SL) results using Equation 15 are not significantly less than using a Tresca methodology for the same set of forces and moments. This paper provides a comparison of the ASME B31.1 SL stresses to the corresponding Tresca stresses in parent material, based on empirical HEP system stress analyses. The results of three piping system evaluations are considered, including examples of longitudinal stress lower than the circumferential stress and examples where the longitudinal stress is greater than the circumferential stress. This study considers the elastic primary stresses on the outside surface of the pipe, prior to any creep redistribution. At locations where the longitudinal stress is greater than the circumferential stress, the SL stress is nearly the same as the elastic Tresca stress. At locations where the longitudinal stress is considerably less than the circumferential stress, the SL stress is considerably less than the elastic Tresca stress. This conclusion is due to the fact that the SL stress is primarily governed by longitudinal loading. The paper also considers inelastic primary stresses, after complete creep redistribution. For piping materials operating in the creep regime, the axial and circumferential pressure stresses are eventually redistributed and are maximum at the outer surface of the pipe. After several years of operation, the Code SL stresses and elastic Tresca stresses are significantly less than the inelastic Tresca stresses. Consequently, the use of SL stresses and elastic Tresca stresses for estimating component inelastic primary stresses would be nonconservative.


Author(s):  
Samuel A. Huff ◽  
John P. Leach ◽  
Daniel S. Vail

As part of the design basis of any piping system utilized to convey materials, pipe supports are required to ensure those pipes remain in their designed locations and do not overly expand or move due to sustained or occasional loads. These loads represent the total forces and moments in the piping components and as a result create stresses that affect the life of the component. Proper design and maintenance of these supports per the applicable codes and standards provide a reasonable life expectancy for the piping systems. This presentation will review the various codes and standards utilized for both pipe support design and maintenance. A high level overview of what information must be obtained to perform an analysis and meet ASME B31.1 Power Piping code requirements when modifying piping systems will be presented. Specific inputs to system design and computational software including material properties, stress intensification factors (SIF), thicknesses and tolerances, pressures, temperatures, insulation, coatings, the occasional loads, etc. will be discussed. Guidelines will be discussed for determining what piping modifications warrant a full pipe stress analysis to be performed. Recommendations for pipe support maintenance inspections will be provided to facilitate increased life expectancies of subject piping systems. The mandatory requirements of ASME B31.1 Chapter VII will be discussed, as well as recommendations from the non-mandatory appendix. Implementing maintenance programs at existing facilities will be discussed. Step by step recommendations for how to apply these guidelines within a long-term life extension program will be given. Tolerances and general guidelines associated with these programs will also be discussed. Finally, common pipe support failures, what they can affect, and how to look for early indicators of fatigue or failure will be covered.


Author(s):  
Marvin J. Cohn

Many utilities select critical welds in their main steam (MS) and hot reheat (HRH) piping systems by considering some combination of design-based stresses, terminal point locations, and fitting weldments. The conventional methodology results in frequent inspections of many low risk areas and the neglect of some high risk areas. This paper discusses the use of a risk-based inspection (RBI) strategy to select the most critical inspection locations, determine appropriate reexamination intervals, and recommend the most important corrective actions for the piping systems. The high energy piping life consumption (HEPLC) strategy applies cost effective RBI principles to enhance inspection programs for MS and HRH piping systems. Using a top-down methodology, this strategy is customized to each piping system, considering applicable effects, such as expected damage mechanisms, previous inspection history, operating history, measured weldment wall thicknesses, observed support anomalies, and actual piping thermal displacements. This information can be used to provide more realistic estimates of actual time-dependent multiaxial stresses. Finally, the life consumption estimates are based on realistic weldment performance factors. Risk is defined as the product of probability and consequence. The HEPLC strategy considers a more quantitative probability assessment methodology as compared to most RBI approaches. Piping stress and life consumption evaluations, considering existing field conditions and inspection results, are enhanced to reduce the uncertainty in the quantitative probability of failure value for each particular location and to determine a more accurate estimate for future inspection intervals. Based on the results of many HEPLC projects, the author has determined that most of the risk (regarding failure of the pressure boundary) in MS and HRH piping systems is associated with a few high priority areas that should be examined at appropriate intervals. The author has performed many studies using RBI principles for MS and HRH piping systems over the past 15 years. This life management strategy for MS and HRH critical welds is a rational approach to determine critical weldment locations for examinations and to determine appropriate reexamination intervals as a risk-based evaluation technique. Both consequence of failure (COF) and likelihood of failure (LOF) are considered in this methodology. This paper also provides a few examples of the application of this methodology to MS and HRH piping systems.


Author(s):  
Marvin J. Cohn

A high energy piping (HEP) program is important for the safety of plant personnel and reliability of the generating units. HEP weldment failures have resulted in serious injuries, fatalities, extensive damage of components, and significant lost generation. Since creep/fatigue is a typical failure mechanism, the probability of HEP failures increases with unit age. The main steam (MS) piping system is one of the most critical HEP systems. Weldment failures are typically due to a combination of high temperature creep and fatigue. Industry best practices include (1) the evaluation of historical operating conditions, (2) examinations of critical weldments to reveal NDE indications, microstructural material damage, and detailed geometry data, (3) hot and cold walkdowns to document the field piping system behavior and anomalies, (4) simulation of as-found piping displacements to estimate actual stresses, (5) ranking of critical weldments, (6) recommendations for support repairs and adjustments, (7) recommendations for future examinations, and (8) remaining life estimates at critical weldments. Appropriate examinations, condition assessments, and recommendations for corrective actions are provided as a cost-effective life management process to maintain the piping system integrity. This paper provides examples demonstrating that the girth welds ranked below the top five to six welds are subject to significantly less applied stress and have substantially more creep/fatigue life than the top ranked welds. Hanger adjustments, along with selective identification, NDE, and possible repairs of top ranked welds provide substantially greater life to MS piping systems. Some fitness-for-service and risk-based programs for MS piping system girth weldments recommend a stress evaluation using typical pressure vessel or boiler tube calculations, in which the hoop stress is the principal stress. In some cases, the effective weldment stresses can be more than 50 percent above the hoop stress, resulting in the estimated remaining lives less than 15 percent of the life estimates using the hoop stress methodology. Some HEP life management programs may vaguely discuss using the principal stress based on a finite element analysis of the piping system. These principal stress values may be based on a conventional as-designed piping stress analysis. In the majority of the as-found piping stress analyses performed by the author, the maximum as-found stresses are substantially greater than the maximum conventional as-designed piping stresses. Consequently, an as-designed piping stress analysis will typically underestimate the life of an HEP system and typically not predict the locations of maximum creep/fatigue damage.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Marvin J. Cohn

A high energy piping (HEP) program is important for the safety of plant personnel and reliability of the generating units. HEP weldment failures have resulted in serious injuries, fatalities, extensive damage of components, and significant lost generation. Since creep/fatigue is a typical failure mechanism, the probability of HEP failures increases with unit age. The main steam (MS) piping system is one of the most critical HEP systems. Weldment failures are typically due to a combination of high temperature creep and fatigue. Industry best practices include (1) the evaluation of historical operating conditions; (2) examinations of critical weldments to reveal nondestructive examination (NDE) indications, microstructural material damage, and detailed geometry data; (3) hot and cold walkdowns to document the field piping system behavior and anomalies; (4) simulation of as-found piping displacements to estimate actual stresses; (5) ranking of critical weldments; (6) recommendations for support repairs and adjustments; (7) recommendations for future examinations; and (8) remaining life estimates at critical weldments. Appropriate examinations, condition assessments, and recommendations for corrective actions are provided as a cost-effective life management process to maintain the piping system integrity. This paper provides examples demonstrating that the girth welds ranked below the top five to six welds are subject to significantly less applied stress and have substantially more creep/fatigue life than the top ranked welds. Hanger adjustments, along with selective identification, NDE, and possible repairs of top ranked welds provide substantially greater life to MS piping systems. Some fitness-for-service and risk-based programs for MS piping system girth weldments recommend a stress evaluation using typical pressure vessel or boiler tube calculations, in which the hoop stress is the principal stress. In some cases, the effective weldment stresses can be more than 50% above the hoop stress, resulting in the estimated remaining lives less than 15% of the life estimates using the hoop stress methodology. Some HEP life management programs may vaguely discuss using the principal stress based on a finite element analysis of the piping system. These principal stress values may be based on a conventional as-designed piping stress analysis. In the majority of the as-found piping stress analyses performed by the author, the maximum as-found stresses are substantially greater than the maximum conventional as-designed piping stresses. In the example case study, the maximum effective weldment stress was more than three times greater than the estimated as-designed piping stress at the same location. This paper illustrates than an as-designed piping stress analysis will typically overestimate the life of an HEP system and typically not predict the locations of maximum creep/fatigue damage.


Author(s):  
Marvin J. Cohn

Since there have been several instances of weldment failures in main steam (MS) and hot reheat (HRH) piping systems, most utilities have developed programs to examine their most critical welds. Many utilities select their MS and HRH critical girth welds for examination by consideration of some combination of the ASME B31.1 Code [1] (Code) highest sustained stresses, highest thermal expansion stresses, terminal point locations, and fitting weldments. This paper suggests the use of an alternative life management methodology to prioritize material damage locations based on realistic stresses and applicable damage mechanisms. This methodology is customized to each piping system, considering applicable affects, such as operating history, measured weldment wall thicknesses, observed support anomalies, actual piping thermal displacements, and more realistic time-dependent multiaxial stresses. The high energy piping life consumption (HEPLC) methodology for MS and HRH critical girth welds may be considered as a rational approach to determine critical weldment locations for examinations and to determine appropriate reexamination intervals as a risk-based evaluation technique. The HEPLC methodology has been implemented over the past 15 years to provide more realistic estimates of actual displacements, stresses, and material damage based on the evaluation of field conditions. This HEPLC methodology can be described as having three basic phases: data collection, evaluation, and recommendations. The data collection phase includes obtaining design and post construction piping and supports information. The effects of current piping loads and anomalies are evaluated for potential creep/fatigue damage at the most critical weldments. The top ranked weldments of the HEPLC study are than selected as the highest priority examination locations. The author has completed many HEPLC studies of MS and HRH piping systems. The previous paper (Part 1) provided examples of data collection results and documentation of observed piping system anomalies. This paper will provide examples of evaluation results and recommendations, including a few case histories that have correctly ranked and predicted locations of significant creep/fatigue damage.


Sign in / Sign up

Export Citation Format

Share Document