Force Equilibrium Approach for Linearization of Constrained Mechanical System Dynamics

2003 ◽  
Vol 125 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Ju Seok Kang ◽  
Sangwoo Bae ◽  
Jang Moo Lee ◽  
Tae Oh Tak

The purpose of this study is to derive a linearized form of dynamic equations for constrained mechanical systems. The governing equations for constrained mechanical systems are generally expressed in terms of Differential-Algebraic Equations (DAEs). Conventional methods of linearization are based on the perturbation of the nonlinear DAE, where small amounts of perturbations are taken to guarantee linear characteristics of the equations. On the other hand, the proposed linearized dynamic equations are derived directly from a force equilibrium condition, not from the DAEs, with small motion assumption. This approach is straightforward and simple compared to conventional perturbation methods, and can be applicable to any constrained mechanical systems that undergo small displacement under external forces. The modeling procedure and formulation of linearized dynamic equations are demonstrated by the example of a vehicle suspension system, a typical constrained multibody system. The solution is validated by comparison with conventional nonlinear dynamic analysis and modal test results.

2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
David J. Braun ◽  
Michael Goldfarb

This paper presents an explicit to integrate differential algebraic equations (DAEs) method for simulations of constrained mechanical systems modeled with holonomic and nonholonomic constraints. The proposed DAE integrator is based on the equation of constrained motion developed in Part I of this work, which is discretized here using explicit ordinary differential equation schemes and applied to solve two nontrivial examples. The obtained results show that this integrator allows one to precisely solve constrained mechanical systems through long time periods. Unlike many other implicit DAE solvers which utilize iterative constraint correction, the presented DAE integrator is explicit, and it does not use any iteration. As a direct consequence, the present formulation is simple to implement, and is also well suited for real-time applications.


Author(s):  
Keisuke Kamiya

The governing equations of multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. For efficient and accurate analysis, it is desirable to eliminate the Lagrange multipliers and dependent variables. Methods called null space method and Maggi’s method eliminate the Lagrange multipliers by using the null space matrix for the coefficient matrix which appears in the constraint equation in velocity level. In a previous report, the author presented a method to obtain a time differentiable null space matrix for scleronomic systems, whose constraint does not depend on time explicitly. In this report, the method is generalized to rheonomic systems, whose constraint depends on time explicitly. Finally, the presented method is applied to four-bar linkages.


Author(s):  
Sotirios Natsiavas ◽  
Elias Paraskevopoulos

A new set of equations of motion is presented for a class of mechanical systems subjected to equality motion constraints. Specifically, the systems examined satisfy a set of holonomic and/or nonholonomic scleronomic constraints. The main idea is to consider the equations describing the action of the constraints as an integral part of the overall process leading to the equations of motion. The constraints are incorporated one by one, in a process analogous to that used for setting up the equations of motion. This proves to be equivalent to assigning appropriate inertia, damping and stiffness properties to each constraint equation and leads to a system of second order ordinary differential equations for both the coordinates and the Lagrange multipliers associated to the motion constraints automatically. This brings considerable advantages, avoiding problems related to systems of differential-algebraic equations or penalty formulations. Apart from its theoretical value, this set of equations is well-suited for developing new robust and accurate numerical methods.


Author(s):  
Hamid M. Lankarani ◽  
Behnam Bahr ◽  
Saeid Motavalli

Abstract This paper presents the description of an ideal tool for analysis and design of complex multibody mechanical systems. It is in the form of a general-purpose computer program, which can be used for simulation of many different systems. The generality of this computer-integrated environment allows a wide range of applications with significant engineering importance. No matter how complicated the mechanical system under consideration is, a numerical multibody model of the system is constructed. The governing mixed differential/algebraic equations of motion are automatically formulated and numerically generated. State-of-the-art numerical techniques and computational methods are employed and developed which produce in the response of the system at discrete time junctures. Postprocessing of the results in the form of graphical images or real-time animations provides an enormous aid in visualizing motion of the system. The analysis package may be merged with an efficient design optimization algorithm. The developed integrated analysis/design system is a valuable tool for researchers, design engineers, and analysts of mechanical systems. This computer-integrated tool provides an important bridge between the classical decision making process by an engineer and the emerging technology of computers.


Author(s):  
Edward J. Haug ◽  
Mirela Iancu ◽  
Dan Negrut

Abstract An implicit numerical integration approach, based on generalized coordinate partitioning of the descriptor form of the differential-algebraic equations of motion of multibody dynamics, is presented. This approach is illustrated for simulation of stiff mechanical systems using the well known Newmark integration method from structural dynamics. Second order Newmark integration formulas are used to define independent generalized coordinates and their first time derivative as functions of independent accelerations. The latter are determined as the solution of discretized equations obtained using the descriptor form of the equations of motion. Dependent variables in the formulation, including Lagrange multipliers, are determined to satisfy all the kinematic and kinetic equations of multibody dynamics. The approach is illustrated by solving the constrained equations of motion for mechanical systems that exhibit stiff behavior. Results show that the approach is robust and has the capability to integrate differential-algebraic equations of motion for stiff multibody dynamic systems.


Author(s):  
Keisuke Kamiya ◽  
Makoto Sawada ◽  
Yuji Furusawa

The governing equations for multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. It is desirable for efficient and accurate analysis to eliminate the Lagrange multipliers and dependent variables. As a method to solve the DAEs by eliminating the Lagrange multipliers, there is a method called the null space method. In this report, first, it is shown that using the null space matrix one can eliminate the Lagrange multipliers and reduce the number of velocities to that of the independent ones. Then, a new method to obtain the continuous null space matrix is presented. Finally, the presented method is applied to four-bar linkages.


Sign in / Sign up

Export Citation Format

Share Document