Time Scales for Unsteady Mass Transfer From a Sphere at Low-Finite Reynolds Numbers

2003 ◽  
Vol 125 (4) ◽  
pp. 716-723 ◽  
Author(s):  
Stanley J. Kleis ◽  
Ivan Rivera-Solorio

The problem of unsteady mass transfer from a sphere that impulsively moves from rest to a finite velocity in a non-uniform concentration distribution is studied. A range of low Reynolds numbers (Re<1) and moderate Peclet numbers (Pe ranges from 5.6 to 300) is investigated (typical of the parameters encountered in anchorage dependent cell cultures in micro gravity). Using time scales, the effects of flow field development, concentration boundary layer development and free stream concentration variation are investigated. For the range of parameters considered, the development of the flow field has a negligible effect on the time variation of the Sherwood number (Sh). The Sh time dependence is dominated by concentration boundary layer development for early times and free stream concentration variations at later times.

2016 ◽  
Vol 804 ◽  
pp. 513-530 ◽  
Author(s):  
R. Jason Hearst ◽  
Guillaume Gomit ◽  
Bharathram Ganapathisubramani

The influence of turbulence on the flow around a wall-mounted cube immersed in a turbulent boundary layer is investigated experimentally with particle image velocimetry and hot-wire anemometry. Free-stream turbulence is used to generate turbulent boundary layer profiles where the normalised shear at the cube height is fixed, but the turbulence intensity at the cube height is adjustable. The free-stream turbulence is generated with an active grid and the turbulent boundary layer is formed on an artificial floor in a wind tunnel. The boundary layer development Reynolds number ($Re_{x}$) and the ratio of the cube height ($h$) to the boundary layer thickness ($\unicode[STIX]{x1D6FF}$) are held constant at $Re_{x}=1.8\times 10^{6}$ and $h/\unicode[STIX]{x1D6FF}=0.47$. It is demonstrated that the stagnation point on the upstream side of the cube and the reattachment length in the wake of the cube are independent of the incoming profile for the conditions investigated here. In contrast, the wake length monotonically decreases for increasing turbulence intensity but fixed normalised shear – both quantities measured at the cube height. The wake shortening is a result of heightened turbulence levels promoting wake recovery from high local velocities and the reduction in strength of a dominant shedding frequency.


1998 ◽  
Vol 120 (1) ◽  
pp. 28-35 ◽  
Author(s):  
V. Schulte ◽  
H. P. Hodson

The development of the unsteady suction side boundary layer of a highly loaded LP turbine blade has been investigated in a rectilinear cascade experiment. Upstream rotor wakes were simulated with a moving-bar wake generator. A variety of cases with different wake-passing frequencies, different wake strength, and different Reynolds numbers were tested. Boundary layer surveys have been obtained with a single hotwire probe. Wall shear stress has been investigated with surface-mounted hot-film gages. Losses have been measured. The suction surface boundary layer development of a modern highly loaded LP turbine blade is shown to be dominated by effects associated with unsteady wake-passing. Whereas without wakes the boundary layer features a large separation bubble at a typical cruise Reynolds number, the bubble was largely suppressed if subjected to unsteady wake-passing at a typical frequency and wake strength. Transitional patches and becalmed regions, induced by the wake, dominated the boundary layer development. The becalmed regions inhibited transition and separation and are shown to reduce the loss of the wake-affected boundary layer. An optimum wake-passing frequency exists at cruise Reynolds numbers. For a selected wake-passing frequency and wake strength, the profile loss is almost independent of Reynolds number. This demonstrates a potential to design highly loaded LP turbine profiles without suffering large losses at low Reynolds numbers.


1985 ◽  
Vol 107 (1) ◽  
pp. 54-59 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

Heat transfer and boundary layer measurements were derived from flows over a cooled flat plate with various free-stream turbulence intensities (Tu = 1.6–11 percent), favorable pressure gradients (k = νe/ue2•due/dx = 0÷6•10−6) and cooling intensities (Tw/Te = 1.0–0.53). Special interest is directed towards the effects of the dominant parameters, including the influence on laminar to turbulent boundary layer transition. It is shown, that free-stream turbulence and pressure gradients are of primary importance. The increase of heat transfer due to wall cooling can be explained primarily by property variations as transition, and the influence of free-stream parameters are not affected.


Author(s):  
Jens Iseler ◽  
Lothar Hilgenfeld ◽  
Michael Pfitzner

The flow field through a turbomachinery compressor cascades is significantly affected by the unsteady flow originating from the upstream blade rows. The interaction is caused by the wakes from the upstream blades, which affect the properties of the boundary layer of the downstream blades. In addition, pressure fluctuations exist between upstream and downstream blades. These phenomenona play a significant role in the loss generation process on turbomachinery blades because it influences the onset of transition in the boundary layer and has the potential to suppress a boundary layer separation in some cases. Extensive experimental investigations have been performed at the Institute of Jet Propulsion in Neubiberg, where these effects where studied in detail. The measurements were performed on a large scale compressor cascade called V103-220. The chord length of l = 220 mm chosen allowed the unsteady boundary layer development to be studied in great detail and provided high quality data for this complex flow, which can be used for the validation of CFD codes. Unsteady CFD calculations were performed using the RANS-code TRACE developed at DLR Cologne. A modern variant of the Wilcox k-ω turbulence model in combination with a newly implemented transition model was used, allowing a better determination of multimode transition. A multiblock grid with an O-type grid around the blade and a boundary layer resolution of y+<1 was used. Experimental and numerical results confirm that wake passing has a large influence on the unsteady boundary layer development also in this compressor flow case. The premature forced transition is followed by a stable calmed region, which partially suppresses laminar separation due to its higher shear stress level and delays the onset of transition in the path between wakes. In addition, it was found that the leakage from two slots, which are opened in the rig when the wake generator device is installed, changes the flow field considerably. This effect is not fully reproduced by the CFD calculations. To study this effect in more detail, three-dimensional steady and unsteady CFD calculations were undertaken and are being continued.


2016 ◽  
Vol 303 ◽  
pp. 68-75 ◽  
Author(s):  
Darko Jaćimovski ◽  
Radmila Garić-Grulović ◽  
Nemanja Vučetić ◽  
Rada Pjanović ◽  
Nevenka Bošković-Vragolović

2012 ◽  
Vol 24 (3) ◽  
pp. 033601 ◽  
Author(s):  
K. M. P. van Eeten ◽  
J. van der Schaaf ◽  
J. C. Schouten ◽  
G. J. F. van Heijst

Author(s):  
Volker Schulte ◽  
Howard P. Hodson

The development of the unsteady suction side boundary layer of a highly loaded LP turbine blade has been investigated in a rectilinear cascade experiment. Upstream rotor wakes were simulated with a moving-bar wake generator. A variety of cases with different wake-passing frequencies, different wake strength and different Reynolds-numbers were tested. Boundary layer surveys have been obtained with a single hot-wire probe. Wall shear stress has been investigated with surface-mounted hot-film gauges. Losses have been measured. The suction surface boundary layer development of a modern highly loaded LP turbine blade is shown to be dominated by effects associated with unsteady wake-passing. Whereas without wakes the boundary layer features a large separation bubble at a typical cruise Reynolds-number, the bubble was largely suppressed if subjected to unsteady wake-passing at a typical frequency and wake strength. Transitional patches and becalmed regions, induced by the wake, dominated the boundary layer development. The becalmed regions inhibited transition and separation and are shown to reduce the loss of the wake-affected boundary layer. An optimum wake-passing frequency exists at cruise Reynolds-numbers. For a selected wake-passing frequency and wake-strength, the profile loss is almost independent of Reynolds-number. This demonstrates a potential to design highly loaded LP turbine profiles without suffering large losses at low Reynolds-numbers.


Author(s):  
J. Hourmouziadis ◽  
F. Buckl ◽  
P. Bergmann

Cascade testing tries to simulate the actual flow conditions encountered in a turbine. However, it is neither possible to reproduce the free stream turbulence structure of the turbomachinery, nor the periodic wake effects of upstream blade rows. The usual understanding is that the latter in particular results in a significantly different behaviour of the boundary layer in the engine. Experimental results from cascades and turbine rigs are presented. Grid generated free stream turbulence structure is compared to that in the turbine. Measurements of the profile pressure distribution, flush mounted hot films and flow visualization were used for the interpretation of the test results. Some observations of the boundary layer development in the cascade, on the guide vanes and on rotor blades with typically skewed boundary layers are shown indicating essentially similar behaviour in all cases.


Sign in / Sign up

Export Citation Format

Share Document