Feasibility of High Speed Furnace Drawing of Optical Fibers

2004 ◽  
Vol 126 (5) ◽  
pp. 852-857 ◽  
Author(s):  
Xu Cheng ◽  
Yogesh Jaluria

The domain of operating conditions, in which the optical fiber-drawing process is successful, is an important consideration. Such a domain is mainly determined by the stresses acting on the fiber and by the stability of the process. This paper considers an electrical resistance furnace for fiber drawing and examines conditions for process feasibility. In actual practice, it is known that only certain ranges of furnace temperature and draw speed lead to successful fiber drawing. The results obtained here show that the length of the heated zone and the furnace temperature distribution are other important parameters that can be varied to obtain a feasible process. Physical behavior close to the boundary of the feasible domain is also studied. It is found that the iterative scheme for neck-down profile determination diverges rapidly when the draw temperature is lower than that at the acceptable domain boundary due to the lack of material flow. However, the divergence rate becomes much smaller as the temperature is brought close to the domain boundary. Additional information on the profile determination as one approaches the acceptable region is obtained. It is found that it is computationally expensive and time-consuming to locate the exact boundary of the feasible drawing domain. From the results obtained, along with practical considerations of material rupture, defect concentration, and flow instability, an optimum design of a fiber-drawing system can be obtained for the best fiber quality.

1998 ◽  
Vol 13 (2) ◽  
pp. 483-493 ◽  
Author(s):  
S. Roy Choudhury ◽  
Y. Jaluria

The transport processes in the furnace for the continuous drawing of optical fibers have been studied numerically and analytically. Practical circumstances and operating conditions are considered. A peripheral gas flow configuration has been modeled, along with irises at the ends, as employed in practical furnaces. The neck-down profile of the fiber is not chosen, but has been generated on the basis of a surface force balance. The results obtained are validated by comparisons with earlier experimental results. A detailed analysis has been carried out to determine the relative contributions of different forces during the drawing process. Even though the internal viscous stress is shown to be the major contributor to the draw tension, it is found that under certain operating conditions, the force due to gravity is significant, especially at the beginning of the neck-down region. For a peripheral flow configuration, the effect of flow entrance is found to be very important in determining the necking shape. However, the effect of the iris size on the fiber temperature field is found to be negligible. It is found that for a given furnace temperature and fiber radius, there is an upper limit for draw-down speed at which a fiber can be drawn without rupture. Practical ranges of draw speeds and furnace temperature conditions are identified for the process to be feasible.


1999 ◽  
Vol 121 (4) ◽  
pp. 774-788 ◽  
Author(s):  
U. C. Paek

The paper is primarily to highlight the current issues concerning fiber drawing and coating. The main emphasis is on high-volume production of silica-based optical fibers by using a large preform and a high-speed drawing. The commercial application of these processes has led to increasing the productivity in fiber manufacturing and resulted in a low cost of produced fibers. In order to systematically address the problems associated with the fiber manufacturing process, the fiber drawing system was divided into three major functional sections: heating, cooling, and coating zones. The governing equations at each section were formulated to describe the process mechanics and to identify the key control parameters for drawing and coating. These process parameters are the basic elements of implementing a streamline production system of optical fibers.


1998 ◽  
Vol 120 (4) ◽  
pp. 916-930 ◽  
Author(s):  
Zhilong Yin ◽  
Y. Jaluria

The thermal transport associated with optical fiber drawing at relatively high drawing speeds, ranging up to around 15 m/s, has been numerically investigated. A conjugate problem involving the glass and the purge gas regions is solved. The transport in the preform/fiber is coupled, through the boundary conditions, with that in the purge gas, which is used to provide an inert environment in the furnace. The zonal method, which models radiative transport between finite zones in a participating medium, has been employed to compute the radiative heat transfer in the glass. The flow of glass due to the drawing process is modeled with a prescribed free-surface neck-down profile. The numerical results are compared with the few that are available in the literature. The effects of important physical variables such as draw speed, purge gas velocity and properties, furnace temperature, and preform diameter on the flow and the thermal field are investigated. It is found that the fiber drawing speed, the furnace temperature, and the preform diameter have significant effects on the temperature field in the preform/fiber, while the effects of the purge gas velocity and properties are relatively minor. The overall heating of the preform/fiber is largely due to radiative transport in the furnace and the changes needed in the furnace temperature distribution in order to heat the glass to its softening point at high speeds are determined.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 85-91
Author(s):  
D. A. Barton ◽  
J. D. Woodruff ◽  
T. M. Bousquet ◽  
A. M. Parrish

If promulgated as proposed, effluent guidelines for the U.S. pulp and paper industry will impose average monthly and maximum daily numerical limits of discharged AOX (adsorbable organic halogen). At this time, it is unclear whether the maximum-day variability factor used to establish the proposed effluent guidelines will provide sufficient margin for mills to achieve compliance during periods of normal but variable operating conditions within the pulping and bleaching processes. Consequently, additional information is needed to relate transient AOX loadings with final AOX discharges. This paper presents a simplistic dynamic model of AOX decay during treatment. The model consists of hydraulic characterization of an activated sludge process and a first-order decay coefficient for AOX removal. Data for model development were acquired by frequent collection of influent and effluent samples at a bleach kraft mill during a bleach plant shutdown and startup sequence.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4865
Author(s):  
Kinzo Kishida ◽  
Artur Guzik ◽  
Ken’ichi Nishiguchi ◽  
Che-Hsien Li ◽  
Daiji Azuma ◽  
...  

Distributed acoustic sensing (DAS) in optical fibers detect dynamic strains or sound waves by measuring the phase or amplitude changes of the scattered light. This contrasts with other distributed (and more conventional) methods, such as distributed temperature (DTS) or strain (DSS), which measure quasi-static physical quantities, such as intensity spectrum of the scattered light. DAS is attracting considerable attention as it complements the conventional distributed measurements. To implement DAS in commercial applications, it is necessary to ensure a sufficiently high signal-noise ratio (SNR) for scattered light detection, suppress its deterioration along the sensing fiber, achieve lower noise floor for weak signals and, moreover, perform high-speed processing within milliseconds (or sometimes even less). In this paper, we present a new, real-time DAS, realized by using the time gated digital-optical frequency domain reflectometry (TGD-OFDR) method, in which the chirp pulse is divided into overlapping bands and assembled after digital decoding. The developed prototype NBX-S4000 generates a chirp signal with a pulse duration of 2 μs and uses a frequency sweep of 100 MHz at a repeating frequency of up to 5 kHz. It allows one to detect sound waves at an 80 km fiber distance range with spatial resolution better than a theoretically calculated value of 2.8 m in real time. The developed prototype was tested in the field in various applications, from earthquake detection and submarine cable sensing to oil and gas industry applications. All obtained results confirmed effectiveness of the method and performance, surpassing, in conventional SM fiber, other commercially available interrogators.


2007 ◽  
Vol 1054 ◽  
Author(s):  
Ruth Houbertz ◽  
Herbert Wolter ◽  
Volker Schmidt ◽  
Ladislav Kuna ◽  
Valentin Satzinger ◽  
...  

ABSTRACTThe integration of optical interconnects in printed circuit boards (PCB) is a rapidly growing field worldwide due to a continuously increasing need for high-speed data transfer. There are any concepts discussed, among which are the integration of optical fibers or the generation of waveguides by UV lithography, embossing, or direct laser writing. The devices presented so far require many different materials and process steps, but particularly also highly-sophisticated assembly steps in order to couple the optoelectronic elements to the generated waveguides. In order to overcome these restrictions, an innovative approach is presented which allows the embedding of optoelectronic components and the generation of optical waveguides in only one optical material. This material is an inorganic-organic hybrid polymer, in which the waveguides are processed by two-photon absorption (TPA) processes, initiated by ultra-short laser pulses. In particular, due to this integration and the possibility ofin situpositioning the optical waveguides with respect to the optoelectronic components by the TPA process, no complex packaging or assembly is necessary. Thus, the number of necessary processing steps is significantly reduced, which also contributes to the saving of resources such as energy or solvents. The material properties and the underlying processes will be discussed with respect to optical data transfer in PCBs.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document