Vortex-Wake-Blade Interaction in a Shrouded Axial Turbine

2005 ◽  
Vol 127 (4) ◽  
pp. 699-707 ◽  
Author(s):  
J. Schlienger ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper presents time-resolved flow field measurements at the exit of the first rotor blade row of a two stage shrouded axial turbine. The observed unsteady interaction mechanism between the secondary flow vortices, the rotor wake and the adjacent blading at the exit plane of the first turbine stage is of prime interest and analyzed in detail. The results indicate that the unsteady secondary flows are primarily dominated by the rotor hub passage vortex and the shed secondary flow field from the upstream stator blade row. The analysis of the results revealed a roll-up mechanism of the rotor wake layer into the rotor indigenous passage vortex close to the hub endwall. This interesting mechanism is described in a flow schematic within this paper. In a second measurement campaign the first stator blade row is clocked by half a blade pitch relative to the second stator in order to shift the relative position of both stator indigenous secondary flow fields. The comparison of the time-resolved data for both clocking cases showed a surprising result. The steady flow profiles for both cases are nearly identical. The analysis of the probe pressure signal indicates a high level of unsteadiness that is due to the periodic occurrence of the shed first stator secondary flow field.

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated both experimentally and numerically for some years now. Even though the numerical methods are still in development, today they have reached a certain degree of maturity allowing industry to focus on the results of the computations and their impact on turbine design, rather than on a further improvement of the methods themselves. The key to increase efficiency in modern gas turbines is a better understanding and subsequent optimization of the loss-generation mechanisms. A major part of these are the secondary losses. To this end, this paper presents the time-resolved secondary flow field for the two test cases computed, viz the first and the last turbine stage of a modern heavy duty gas turbine. A companion paper referring to the same computations focuses on the unsteady pressure fluctuations on vanes and blades. The investigations have been performed with the flow solver ITSM3D which allows for efficient calculations that simulate the real blade count ratio. This is a prerequisite to simulate the unsteady phenomena in frequency and amplitude properly.


Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flow-field. Of particular interest to the designer is the effect of purge on the secondary flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and Computational Fluid Dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically-accessible 1-stage turbine rig. The experimental campaign was conducted using Volumetric Velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using URANS computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the roll-up of a horseshoe-vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flow-rate, was shown to modify the secondary flow field by enhancing the passage vortex, both in strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


Author(s):  
Tobias R. Müller ◽  
Damian M. Vogt ◽  
Klemens Vogel ◽  
Bent A. Phillipsen

The present numerical study aims at examining the influence of intrarow interaction effects in aerodynamic damping predictions of an axial turbine rotor. The investigated operating point corresponds to a resonance crossing associated with the fundamental engine order of the stator blade row. Accordingly, the pressure perturbations induced by the vibration of the rotor at its modal frequency are found to be coincident in frequency and thus superimpose with the pressure perturbations resulting from intrarow interaction phenomena. A methodology for extracting vibration induced pressure perturbations for the subsequent calculation of the vibration induced modal aerodynamic damping is established and applied within the scope of the present study. Applying this methodology, both the influence of the underlying mean and transient flow field as well as the influence of acoustic wave reflections at the adjacent stator blade row is investigated on the predicted aerodynamic damping. In this context, the underlying mean flow field, which is found to be slightly altered in the presence of intrarow interaction phenomena, was proven to have a significant influence on vibration induced pressure perturbations. Moreover, acoustic wave reflections at the adjacent stator blade row are found to have the capability of influencing the aerodynamic damping depending on their actual phasing when impinging onto the turbine rotor.


Author(s):  
H. E. Gallus ◽  
J. Zeschky ◽  
C. Hah

Detailed experimental and numerical studies have been performed in a subsonic, axial-flow turbine stage to investigate the secondary flow field, the aerodynamic loss generation, and the spanwise mixing under a stage environment. The experimental study includes measurements of the static pressure distribution on the rotor blade surface and the rotor exit flow field using three-dimensional hot-wire and pneumatic probes. The rotor exit flow field was measured with an unsteady hot-wire probe which has high temporal and spatial resolution. Both steady and unsteady numerical analyses were performed with a three-dimensional Navier-Stokes code for the multiple blade rows. Special attention was focused on how well the steady multiple-blade-row calculation predicts the rotor exit flow field and how much the blade interaction affects the radial distribution of flow properties at the stage exit. Detailed comparisons between the measurement and the steady calculation indicate that the steady multiple-blade-row calculation predicts the overall time-averaged flow field very well. However, the steady calculation does not predict the secondary flow at the stage exit accurately. The current study indicates that the passage vortex near the hub of the rotor is transported toward the mid-span due to the blade interaction effects. And, the structure of the secondary flow field at the exit of the rotor is significantly modified by the unsteady effects. The time-averaged secondary flow field and the radial distribution of the flow properties, which are uses for the design of the following stage, can be predicted more accurately with the unsteady flow calculation.


1995 ◽  
Vol 117 (4) ◽  
pp. 562-570 ◽  
Author(s):  
H. E. Gallus ◽  
J. Zeschky ◽  
C. Hah

Detailed experimental and numerical studies have been performed in a subsonic, axial-flow turbine stage to investigate the secondary flow field, the aerodynamic loss generation, and the spanwise mixing under a stage environment. The experimental study includes measurements of the static pressure distribution on the rotor blade surface and the rotor exit flow field using three-dimensional hot-wire and pneumatic probes. The rotor exit flow field was measured with an unsteady hot-wire probe, which has high temporal and spatial resolution. Both steady and unsteady numerical analyses were performed with a three-dimensional Navier–Stokes code for the multiple blade rows. Special attention was focused on how well the steady multiple-blade-row calculation predicts the rotor exit flow field and how much the blade interaction affects the radial distribution of flow properties at the stage exit. Detailed comparisons between the measurement and the steady calculation indicate that the steady multiple-blade-row calculation predicts the overall time-averaged flow field very well. However, the steady calculation does not predict the secondary flow at the stage exit accurately. The current study indicates that the passage vortex near the hub of the rotor is transported toward the midspan due to the blade interaction effects. Also, the structure of the secondary flow field at the exit of the rotor is significantly modified by the unsteady effects. The time-averaged secondary flow field and the radial distribution of the flow properties, which are used for the design of the following stage, can be predicted more accurately with the unsteady flow calculation.


Author(s):  
J. Schlienger ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper presents the results of time-resolved flow field measurements of a multistage shrouded axial turbine. The unsteady interaction mechanism between the rotor’s secondary flow vortices, the rotor’s wake and the adjacent blading at the exit plane of the first turbine stage is of prime interest and analysed in detail. Three key phases are identified for one blade passing event. The first phase shows a quasi undisturbed convection of the rotor’s secondary flow field into the downstream stator. The second phase shows a migration of high loss fluid from the wake layer into the passage and horse-shoe vortices at the rotor hub section. The relative motion between the rotor and stator blades brings the two vortices closer to the wake layer and lets the flow features interact with each other. The third phase focuses on the rotor indigenous hub vortices that are bent and stretched around the stator’s leading edge. The signal analysis of the time-resolved flow field indicates a high level of unsteadiness at the stator’s pressure side. The associated unsteadiness within the flow field is evaluated and quantified on the basis of pitchwise averaged space-time diagrams. The obtained results are finally discussed and explained using two flow schematics within and at the end of the paper.


Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 degrees, and for three pitch-chord ratios: s/c = 0.58,0.73,0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five hole probe in a plane located at 50% of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots show in detail how much the secondary flow field is modified both by incidence and cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch averaged loss and of the deviation angle, when incidence or pitch-chord ratio is varied.


Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the altitude test-facility aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multi-stage CFD predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positve incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions vane 1 passage vortex fluid is involved in the midspan passage interaction leading to a more distorted three-dimensional flow field.


Author(s):  
Johan Hja¨rne ◽  
Valery Chernoray ◽  
Jonas Larsson

This paper presents experiments and CFD calculations of a Low Pressure Turbine/Outlet Guide Vane (LPT/OGV) equipped with an engine mount recess (a bump) tested in the Chalmers linear LPT/OGV cascade. The investigated characteristics include performance for the design point in terms of total pressure loss and turning as well as a detailed description of the downstream development of the secondary flow field. The numerical simulations are performed for the same inlet conditions as in the test-facility with engine-like properties in terms of Reynolds number, boundary-layer thickness and inlet flow angle. The objective is to validate how accurately and reliably the secondary flow field and losses can be predicted for an LPT/OGV equipped with a bump. Three different turbulent models as implemented in FLUENT, the k-ε realizable model, the kω-SST model and the RSM are validated against detailed measurements. From these results it can be concluded that the kω-SST model predicts both the secondary flow field and the losses most accurately.


Sign in / Sign up

Export Citation Format

Share Document