Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate

2006 ◽  
Vol 129 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fahmi Zaïri ◽  
Moussa Naït-Abdelaziz ◽  
Krzysztof Woznica ◽  
Jean-Michel Gloaguen

In this study, a modelization of the viscoplastic behavior of amorphous polymers is proposed, from an approach originally developed for metal behavior at high temperature, in which state variable constitutive equations have been modified. A procedure for the identification of model parameters is developed through the use of experimental data from both uniaxial compressive tests extracted from the literature and uniaxial tensile tests performed in this study across a variety of strain rates. The numerical algorithm shows that the predictions of this model well describe qualitatively and quantitatively the intrinsic softening immediately after yielding and the subsequent progressive orientational hardening corresponding to the response of two polymers, amorphous polyethylene terephthalate and rubber toughened polymethyl methacrylate.

1992 ◽  
Vol 114 (4) ◽  
pp. 378-383 ◽  
Author(s):  
G. Ferron ◽  
H. Karmaoui Idrissi ◽  
A. Zeghloul

Constitutive equations based on a state variable modeling of the thermo-viscoplastic behavior of metals are discussed, and incorporated in an exact, long-wavelength analysis of the neck-growth process in uniaxial tension. The general formalism is specialized to the case of f.c.c. metals in the range of intragranular, diffusion controlled plastic flow. The model is shown to provide a consistent account of aluminum behavior both under constant strain-rate and creep. Calculated uniaxial tensile ductilities and rupture lives in creep are also compared with experiments.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


1993 ◽  
Vol 305 ◽  
Author(s):  
J. C. Arnold ◽  
A. R. Eccott

AbstractThe effects of physical ageing and prior immersion time on the ESC behaviour of polycarbonate in ethanol were studied. Constant strain rate tensile tests were performed at a range of strain rates for samples with ageing times varying from 100 hours to 3000 hours and for prior immersion times of between 1 hour and 500 hours. Comparison of tests performed in ethanol and in air gave a good indication of the point of craze initiation. The results showed that there was a reduction in strain to crazing as the strain rate decreased, apart from with the lowest strain rate used. A longer prior immersion time also promoted craze formation. Both of these results are attributable to diffusion effects. Physical ageing had little effect on the ESC behaviour, due to the large amounts of deformation encountered in this system.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


Author(s):  
Lidong Wang ◽  
Xiongqi Peng ◽  
Mingrui Liu

The basic mechanical properties of a diaphragm under various temperatures in hot diaphragm preforming of composites are obtained by uniaxial tensile tests. A constitutive model considering the influence of temperature is accordingly developed to characterize its large deformation behavior. Model parameters are obtained by nonlinear fitting experiment data. The constitutive model is implemented in ABAQUS through the user material subroutine UHYPER. The developed constitutive model is verified by simulating the covering deformation of the diaphragm over a C-type mold. Finally, as an application of the developed hyperelastic model, an optimal design of a support bar in the hot diaphragm preforming process is implemented. The constitutive model lays a solid foundation for the finite element simulation and process optimization of the hot diaphragm forming (HDF) of carbon composites.


Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Abstract Electronic equipment in automotive, agricultural and avionics applications may be subjected to temperatures in the range of −55 to 200°C during storage, operation and handling in addition to high strain-rates. Strain rates in owing to vibration and shock may range from 1–100 per sec. Temperature in electronic assemblies depends typically on location, energy dissipation and thermal architecture. Some investigators have indicated that the required operating temperature is between −40 to 200°C for automotive electronics located underhood, on engine, on transmission. Prior data indicates the evolution of mechanical properties under extended exposures to high temperatures. However, the constitutive models are often only available for pristine materials only. In this paper, effect of low operating temperatures (−65°C to 0°C) on Anand-model parameters at high strain rates (10–75 per sec) for aged SAC (SAC105 and SAC-Q) solder alloys has been studied. Stress-Strain curves have been obtained at low operating temperatures using tensile tests. The SAC leadfree solder samples were subjected to isothermal-aged up to 4-months at 50°C before testing. Anand Viscoplastic model has been used to describe the material constitutive behavior. Evolution of Anand Model parameters for SAC solder has been investigated. The computed parameters of the experimental data were used to simulate the tensile test and verified the accuracy of the model. A good correlation was found between experimental data and Anand predicted data.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Peng ◽  
Xuanzhen Chen ◽  
Shan Peng ◽  
Chao Chen ◽  
Jiahao Li ◽  
...  

In order to study the dynamic and fracture behavior of 6005 aluminum alloy at different strain rates and stress states, various tests (tensile tests at different strain rates and tensile shearing tests at five stress states) are conducted by Mechanical Testing and Simulation (MTS) and split-Hopkinson tension bar (SHTB). Numerical simulations based on the finite element method (FEM) are performed with ABAQUS/Standard to obtain the actual stress triaxialities and equivalent plastic strain to fracture. The results of tensile tests for 6005 Al show obvious rate dependence on strain rates. The results obtained from simulations indicate the feature of nonmonotonicity between the strain to fracture and stress triaxiality. The equivalent plastic strain reduces to a minimum value and then increases in the stress triaxiality range from 0.04 to 0.30. A simplified Johnson-Cook (JC) constitutive model is proposed to depict the relationship between the flow stress and strain rate. What is more, the strain-rate factor is modified using a quadratic polynomial regression model, in which it is considered to vary with the strain and strain rates. A fracture criterion is also proposed in a low stress triaxiality range from 0.04 to 0.369. Error analysis for the modified JC model indicates that the model exhibits higher accuracy than the original one in predicting the flow stress at different strain rates. The fractography analysis indicates that the material has a typical ductile fracture mechanism including the shear fracture under pure shear and the dimple fracture under uniaxial tensile.


2016 ◽  
Vol 715 ◽  
pp. 153-158
Author(s):  
Ming Jun Piao ◽  
Hoon Huh ◽  
Ik Jin Lee ◽  
Hyung Won Kim ◽  
Lee Ju Park

This paper is concerned with the validation of the dynamic hardening behaviors of metallic materials by comparing numerical and experimental results of the Taylor impact tests. Several uniaxial tensile tests are performed at different strain rates and temperatures by using three kinds of materials: 4130 steel (BCC); OFHC copper (FCC); and Ti6Al4V alloy (HCP). Uniaxial material tests are performed at a wide range of strain rates from 10−3 s−1 to 103 s−1. Moreover, tensile tests are performed at temperature of 25 °C and 200 °C at strain rates of 10−3 s−1, 10−1 s−1, and 102 s−1, respectively. A modified Johnson–Cook type thermal softening model is utilized for the accurate application of the thermal softening effect at different strain rates. The hardening behaviors of the three materials are characterized by comparing the seven sequentially deformed shapes of the projectile from numerical and experimental results of Taylor impact tests.


1996 ◽  
Vol 460 ◽  
Author(s):  
Yinmin Wang ◽  
Dongliang Lin ◽  
Yun Zhang

ABSTRACTFrom our previous work, Ni3Al polycrystals with combined addition of magnesium and silicon kept high values of compressive strain at rupture (CSR) when the strain rate rose. In order to further improve hot workability of Ni3Al, 7.9wt.% Cr was added. The compressive tests showed that 30%∼40% CSR values of the alloy had been kept in a wide temperature range of 1173K-1373K at strain rates of 10-2sec-1 and 10-2sec-1 in contrast with 15%∼25% CSR values of the alloy without Cr addition.In practical hot rolling process, at initial deformation temperature of 1373K, strain rate of 1.0 sec-1 and by controlling reduction within 10∼15% each rolling pass, Ni3Al ingots were successfully hot-rolled into polycrystals with different deformations, the maximum of which was 55%. The deformed alloys had manifestly enhanced mechanical properties shown by tensile tests.The dislocation configurations of deformed alloys have been investigated by using transmission electron microscope(TEM).


2014 ◽  
Vol 659 ◽  
pp. 57-62 ◽  
Author(s):  
Vlad Carlescu ◽  
Gheorghe Prisacaru ◽  
Dumitru Olaru

Modeling large nonlinear elastic deformation of elastomers is an important issue for developing new materials. Particularly, this is very promising for design and performance analysis of dielectric elastomers (DEs). These “smart materials” are capable of responding to an external electric field by displaying significant change in shape and size. In this paper, finite element method (FEM) was used to simulate the mechanical behavior of soft elastomers on uniaxial tension. Experimental data from uniaxial tensile tests were used in order to calibrate hyperelastic constitutive models of the material behavior. The constitutive model parameters were evaluated in ABAQUS/CAE. The 3D-model simulation results of a dumbbell shaped specimen at uniaxial tension shows very good correspondence with experimental data.


Sign in / Sign up

Export Citation Format

Share Document