Effect of Varus/Valgus Malalignment on Bone Strains in the Proximal Tibia After TKR: An Explicit Finite Element Study

2006 ◽  
Vol 129 (1) ◽  
pp. 1-11 ◽  
Author(s):  
A. Perillo-Marcone ◽  
M. Taylor

Malalignment is the main cause of tibial component loosening. Implants that migrate rapidly in the first two post-operative years are likely to present aseptic loosening. It has been suggested that cancellous bone stresses can be correlated with tibial component migration. A recent study has shown that patient-specific finite element (FE) models have the power to predict the short-term behavior of tibial trays. The stresses generated within the implanted tibia are dependent on the kinematics of the joint; however, previous studies have ignored the kinematics and only applied static loads. Using explicit FE, it is possible to simultaneously predict the kinematics and stresses during a gait cycle. The aim of this study was to examine the cancellous bone strains during the stance phase of the gait cycle, for varying degrees of varus/valgus eccentric loading using explicit FE. A patient-specific model of a proximal tibia was created from CT scan images, including heterogeneous bone properties. The proximal tibia was implanted with a commercial total knee replacement (TKR) model. The stance phase of gait was simulated and the applied loads and boundary conditions were based on those used for the Stanmore knee simulator. Eccentric loading was simulated. As well as examining the tibial bone strains (minimum and maximum principal strain), the kinematics of the bone-implant construct are also reported. The maximum anterior–posterior displacements and internal–external rotations were produced by the model with 20mm offset. The peak minimum and maximum principal strain values increased as the load was shifted laterally, reaching a maximum magnitude for −20mm offset. This suggests that when in varus, the load transferred to the bone is shifted medially, and as the bone supporting this load is stiffer, the resulting peak bone strains are lower than when the load is shifted laterally (valgus). For this particular patient, the TKR design analyzed produced the highest cancellous bone strains when in valgus. This study has provided an insight in the variations produced in bone strain distribution when the axial load is applied eccentrically. To the authors’ knowledge, this is the first time that the bone strain distribution of a proximal implanted tibia has been examined, also accounting for the kinematics of the tibio–femoral joint as part of the simulation. This approach gives greater insight into the overall performance of TKR.

2016 ◽  
Vol 44 (10) ◽  
pp. 2948-2956 ◽  
Author(s):  
Mhd Hassan Albogha ◽  
Toru Kitahara ◽  
Mitsugu Todo ◽  
Hiroto Hyakutake ◽  
Ichiro Takahashi

2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0002 ◽  
Author(s):  
Nicoló Martinelli ◽  
Silvia Baretta ◽  
Alberto Bianchi Castagnone Prati ◽  
Francesco Malerba ◽  
Carlo Corrado Bonifacini ◽  
...  

Category: Ankle, Ankle Arthritis, Basic Sciences/Biologics Introduction/Purpose: Third-generation ankle implants with good clinical results continued to increase the popularity of total ankle arthroplasty (TAA) to address end-stage ankle osteoarthritis preserving joint movement. Newer TAA used fixed-bearing designs, with a theoretical increase of contact stresses leading to a higher polyethylene wear. The purpose of this study was to investigate the contact stresses in the polyethylene component of a new third-generation TAA, with a fixed-bearing design, using 3D finite element analysis. Methods: A three-dimensional finite element model was developed based on the Zimmer Trabecular Metal Total Ankle (ZTMTA) and a finite element analysis was employed to evaluate the contact pressure, contact area and Von Mises stress in the polyethylene articular surface in the stance phase of the gait cycle. Results: The peak values were found at the anterior regions of the articulating surface, where reached 19.8 MPa at 40% of gait cycle. The average contact pressure during the stance phase of gait was 6.9 MPa. The maximum von Mises stress of 14.1 MPa in the anterior section was reached at 40% of the gait cycle. For the central section the maximum von Mises stress of 10.8 MPa was reached at 37% of the gait cycle, whereas for posterior section the maximum of 5.4 MPa was reached at the end of the stance phase (60% of the gait cycle). Conclusion: Although, the average von Mises stress was less than 10 MPa, high peak pressure values were recorded. Advanced models to quantitatively estimate the wear are needed to assess polyethylene and metal component survivorship.


2018 ◽  
Vol 382 ◽  
pp. 181-185
Author(s):  
Usman ◽  
Shyh Chour Huang

When a patient is undergoing a total knee arthroplasty, the proximal tibia is cut with a certain depth for tibial tray mounting. Moreover, the proximal tibia plateau is then drilled distally to create a hole where the tibial tray stem is inserted. Due to the existence of tibial tray stem stuck into the central part of the proximal tibia, the development of stress around the stem becomes the interesting parameter to be investigated, especially in the cement. For this purpose, a simplified two-dimensional finite element model has been created. The focus of the result analysis was fixed only on the knee bend activity load due to the highest von Mises stress occurred in this activity. The highest von Mises stress of 52.80 MPa occurred in the tibial tray, and then followed by the cortical bone, cement, central cancellous bone, and edge cancellous bone with von Mises stresses were 34.56, 5.40, 1.41, and 1.26 MPa, respectively. In the field of displacement and true strain in the cement, the highest resultant of displacement of 0.2mm occurred in the top section of the cement. Around the posterior tip, the cement experienced the tensile strain of 0.02 and around the anterior tip the strain was the compressive strain with similar value.


2013 ◽  
Vol 39 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Momen A. Atieh ◽  
Reza A. Shahmiri

This study aimed to evaluate the effects of different tapering angles of an immediately loaded wide-diameter implant on the stress/strain distribution in bone and implant after implant insertion in healed or fresh molar extraction sockets. A total of 10 finite element (FE) implant-bone models, including 8.1-mm diameter implant, superstructure, and mandibular molar segment, were created to investigate the biomechanical behavior of different implant taper angles in immediate and delayed placement conditions. The degrees of implant taper ranged from 2° to 14°, and the contact conditions between the immediately loaded implants and bone were set with frictional coefficients (μ) of 0.3 in the healed models and 0.1 in the extracted models. Vertical and lateral loading forces of 189.5 N were applied in all models. Regardless of the degree of implant tapering, immediate loading of wide-diameter implants placed in molar extraction sockets generated higher stress/strain levels than implants placed in healed sockets. In all models, the von Mises stresses and strains at the implant surfaces, cortical bone, and cancellous bone increased with the increasing taper angle of the implant body, except for the buccal cancellous bone in the healed models. The maximum von Mises strains were highly concentrated on the buccal cortical struts in the extracted models and around the implant neck in the healed models. The maximum von Mises stresses on the implant threads were more concentrated in the non-tapered coronal part of the 11° and 14° tapered implants, particularly in the healed models, while the stresses were more evenly dissipated along the implant threads in other models. Under immediate loading conditions, the present study indicates that minimally tapered implants generate the most favorable stress and strain distribution patterns in extracted and healed molar sites.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Arnaud Diffo Kaze ◽  
Stefan Maas ◽  
Pierre-Jean Arnoux ◽  
Claude Wolf ◽  
Dietrich Pape

Sign in / Sign up

Export Citation Format

Share Document