Numerical Stability Analysis of a Forced Two-D.O.F. Oscillator With Bilinear Damping

2007 ◽  
Vol 2 (3) ◽  
pp. 211-217 ◽  
Author(s):  
Zsolt Szabó ◽  
Attila Lukács

The current paper investigates the nonlinear stationary oscillations of a quarter vehicle model with two degrees of freedom subjected to a vertical road excitation. The damping of the wheel suspension has a bilinear characteristic, so that the damping strength is larger during compression than during restitution of the damper. For the optimization of the damping behavior the peak-to-peak swings have to be as small as possible. The unevenness of the road was approximated by filtered white noise which was modelled numerically using pseudorandom sequences. The first order form of the governing equations was transformed to hyperspherical representation. The stability was determined according to the largest Liapunov exponents obtained from the numerical simulation. For a chosen parameter range stability charts were constructed both in the stochastic and harmonic case (for comparison).

1932 ◽  
Vol 6 (4) ◽  
pp. 417-427 ◽  
Author(s):  
C. C. Coffin

The gaseous decompositions of the esters butylidene diacetate and ethylidene dipropionate have been studied from points of view previously outlined in papers on the decomposition of ethylidene diacetate (2, 3). The decomposition velocities have been measured at initial pressures of from 5 to 56 cm. of mercury and at temperatures between 211 and 265 °C. The reactions are homogeneous and of the first order. They agree with the Arrhenius equation and give 100% yields (within experimental error) of an aldehyde and an anhydride. The preparation of the compounds and improvements in the technique of the velocity measurements are described.While the specific velocities of the three reactions at any temperature are somewhat different, their activation energies are the same. It is suggested that in the case of such simple reactions, which are strictly localized within the molecular structure, the activation energy can be identified as the maximum energy that the reactive bonds may possess and still exist; i.e., it may be taken as a measure of the stability of the bonds which are broken in the reaction. The suggestion is also made that for a series of reactions which have the same activation energy, the specific velocities can be taken as a relative measure of the number of internal degrees of freedom that contribute to the energy of activation. On the basis of these assumptions it becomes possible to use reaction-velocity measurements for the investigation of intramolecular energy exchange. The theoretical significance of the data is further discussed and the scope of future work in this connection is indicated.The monomolecular velocity constants (sec−1) of the decomposition of ethylidene diacetate, ethylidene dipropionate and butylidene diacetate are given respectively by the equations [Formula: see text], [Formula: see text], and [Formula: see text].


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Qingxia Zhang ◽  
Łukasz Jankowski ◽  
Zhongdong Duan

A method for the simultaneous identification of moving vehicles and the damages of the supporting structure from measured responses is presented. A two-axle vehicle model with two degrees of freedom (DOF) is adopted. The extent of the damage and the vehicle parameters were chosen as the optimisation variables, which allow ill conditioning to be avoided and decrease the number of sensors required. The identification is performed by minimising the distance between the measured responses and the computed responses to given optimisation variables. The virtual distortion method (VDM) was used, such that the response of the damaged structure can be computed from comparison with the intact structure subjected to the same vehicle excitation and to the response-coupled virtual distortions. These are related to the optimisation variables by the system impulse response matrix and are expressed by a linear system, which allowed both types of optimisation variables to be treated in a unified way. The numerical cost is reduced by using a moving influence matrix. The adjoint variable method is used for fast sensitivity analysis. A three-span bridge numerical example is presented, where the identification was verified with 5% root mean square (RMS) measurement, and model, error whilst also considering the surface roughness of the road.


Author(s):  
Zhongjiao Shi ◽  
Liangyu Zhao

The coning motion is a basic angular behavior of spinning missiles. Research on the stability of coning motion is always active. In this paper, the integrated nonlinear governing equations of rigid-elastic angular motion for a spinning missile with high fineness ratio are derived firstly following the Lagrangian approach. Secondly, a set of linear equation is obtained under some assumptions considering the first order vibration mode in the form of complex summation for theoretical analysis. Finally, the sufficient and necessary conditions of coning motion dynamic stability for spinning missile with and without an acceleration autopilot are analytically derived and verified by numerical simulations based on the linear equation. It is concluded that the aeroelasticity can shrink the stable region of the design parameters, even lead to a divergent coning motion.


2021 ◽  
pp. 107754632098779
Author(s):  
Heng Wei ◽  
Jian-Wei Lu ◽  
Sheng-Yong Ye ◽  
Hang-Yu Lu

The vertical load of the tire has a significant influence on the lateral force, so the influence of the dynamic load on vehicle shimmy should be taken into account. Based on the dynamic model of a quarter vehicle, a three-degrees-of-freedom dynamic model of the shimmy system with consideration of the road roughness excitation is established by applying the second Lagrange equation. The response characteristic of the system is investigated by the numerical simulations. Moreover, the complexification-averaging method is used to obtain the analytical expression of the shimmy angle of the front wheel, and then, the stability of periodic solutions of the system is evaluated based on the bifurcation theory. Finally, the saddle-node bifurcation and Hopf bifurcation of the shimmy system are studied. The influence of the system parameters on the bifurcation characteristic of the system is also investigated, and the results obtained by using the complexification-averaging method are compared with the numerical examples.


Author(s):  
Z L Jin ◽  
J S Weng ◽  
H Y Hu

In this paper, a linear vehicle model with three degrees of freedom is established to study the stability of vehicle rollover due to critical driving manoeuvres. From the linear vehicle model, the stability conditions are determined on the basis of the Routh-Hurwitz criterion, and a so-called dynamic stability factor is defined to reveal the effects of system parameters on the stability of vehicle rollover. In order to demonstrate the theoretical results, two numerical examples are given for the rollover of a sport utility vehicle in cornering and lane-change manoeuvres at a high speed and large steering angle. The stability regions are shown with respect to the vehicle speed and the vehicle parameters, such as the longitudinal distance from the centre of gravity to the front axle, and the steering angle of the front wheel.


Author(s):  
Hamed Samandari ◽  
Mousa Rezaee

In this paper, the dynamic behavior of a quarter-car with two degree-of-freedom which consists of sprung mass and unsprung mass is examined. Nonlinearity occurred due to nonlinear hysteretic suspension damper and spring. Vehicle tire is modeled as a nonlinear hardening spring. The disturbance of road assumed to be sinusoid. Frequency response diagram of the model has been obtained. Results show that the dynamic response of the vehicle can be chaotic. Influence of road roughness amplitude on vehicle vibration is investigated and critical amplitude of the road surface profile is found, above which the system can vibrate chaotically. The comparison between the results obtained from the proposed model and those from the single degree-of-freedom quarter-car model shows that the unsprung mass has great influence on the dynamical behavior of the system, which cannot be ignored.


2020 ◽  
Vol 10 (1) ◽  
pp. 5330-5339
Author(s):  
E. Yildirim ◽  
I. Esen

In this study, the dynamic interaction between road and vehicle is modeled. For this purpose, a full vehicle model with eight degrees of freedom is considered. The equations of motion of the whole system are derived by the D’Alambert method and numerical solutions are obtained by the Newmark average acceleration method. Due to varying road roughness, the forces affecting the driver and the vehicle-components are analyzed in detail. Also, vertical and rotational displacements, velocities, and accelerations are examined, and results graphs are given. Two different pre-defined road profiles, created as non-random road excitation, and five different vehicle speeds are presented and analyzed.


2021 ◽  
pp. 107754632110004
Author(s):  
Hassan Afshari ◽  
Hossein Amirabadi

In this article, a comprehensive study is conducted on the free vibration analysis of rotating truncated conical shells reinforced with functionally graded agglomerated carbon nanotubes The shell is modeled based on the first-order shear deformation theory, and effective mechanical properties are calculated based on the Eshelby–Mori–Tanaka scheme along with the rule of mixture. By considering centrifugal and Coriolis accelerations and initial hoop tension, the set of governing equations is derived using Hamilton’s principle and is solved numerically using the differential quadrature method Convergence and accuracy of the presented model are confirmed and the effects of different parameters on the forward and backward frequencies of the rotating carbon nanotube-reinforced truncated conical shells are investigated.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1519
Author(s):  
Mikulas Huba ◽  
Pavol Bistak ◽  
Damir Vrancic ◽  
Katarina Zakova

The article reviews the results of a number of recent papers dealing with the revision of the simplest approaches to the control of first-order time-delayed systems. The concise introductory review is extended by an analysis of two discrete-time approaches to dead-time compensation control of stable, integrating, and unstable first-order dead-time processes including simple diagnostics of the model used and focusing on the possibility of simplified but reliable plant modelling. The first approach, based on the first historically known dead-time compensator (DTC) with possible dead-beat performance, is based on the reconstruction of the actual process variables and the compensation of input disturbances by an extended state observer (ESO). Such solutions play an important role both in a disturbance observer (DOB) based control and in an active disturbance rejection control (ADRC). The second approach considered comes from the Smith predictor with two degrees of freedom, which combines feedforward control with output disturbance reconstruction and compensation by the parallel plant model. It is shown that these two approaches offer advantageous properties in the case of actuator limitations, in contrast to the commonly used PID controllers. However, when applied to integrating and unstable first-order systems, the unconstrained and possibly unobservable output disturbance signal of the second solution must be eliminated from the control loop, due to the hidden structural instability of the Smith predictor-like solutions. The modified solutions, usually referred to as filtered Smith predictor (FSP), then no longer provide a disturbance signal and thus no longer fully fit into the concept of Industry 4.0, which is focused on further optimization, predictive maintenance in dynamic systems, diagnosis, fault detection and fault identification of dynamic processes and forms the basis for the digitalization of smart production. Nevertheless, the detailed analysis of the elimination of the unstable disturbance response mode is also worth mentioning in terms of other possible solutions. The application of both approaches to the control of a thermal process shows almost equivalent quality, but with different dependencies on the tuning parameters used. It is confirmed that a more detailed identification of the controlled process and the resulting higher complexity of the control algorithms does not necessarily lead to an increase in the resulting quality of the transients, which underlines the importance of the simplified plant modelling for practice.


Sign in / Sign up

Export Citation Format

Share Document