Study of Flame Stability in a Step Swirl Combustor

1996 ◽  
Vol 118 (2) ◽  
pp. 308-315 ◽  
Author(s):  
M. D. Durbin ◽  
M. D. Vangsness ◽  
D. R. Ballal ◽  
V. R. Katta

A prime requirement in the design of a modern gas turbine combustor is good combustion stability, especially near lean blowout (LBO), to ensure an adequate stability margin. For an aeroengine, combustor blow-off limits are encountered during low engine speeds at high altitudes over a range of flight Mach numbers. For an industrial combustor, requirements of ultralow NOx emissions coupled with high combustion efficiency demand operation at or close to LBO. In this investigation, a step swirl combustor (SSC) was designed to reproduce the swirling flow pattern present in the vicinity of the fuel injector located in the primary zone of a gas turbine combustor. Different flame shapes, structure, and location were observed and detailed experimental measurements and numerical computations were performed. It was found that certain combinations of outer and inner swirling air flows produce multiple attached flames, aflame with a single attached structure just above the fuel injection tube, and finally for higher inner swirl velocity, the flame lifts from the fuel tube and is stabilized by the inner recirculation zone. The observed difference in LBO between co- and counterswirl configurations is primarily a function of how the flame stabilizes, i.e., attached versus lifted. A turbulent combustion model correctly predicts the attached flame location(s), development of inner recirculation zone, a dimple-shaped flame structure, the flame lift-off height, and radial profiles of mean temperature, axial velocity, and tangential velocity at different axial locations. Finally, the significance and applications of anchored and lifted flames to combustor stability and LBO in practical gas turbine combustors are discussed.

Author(s):  
Mark D. Durbin ◽  
Marlin D. Vangsness ◽  
Dilip R. Ballal ◽  
Viswanath R. Katta

A prime requirement in the design of a modem gas turbine combustor is good combustion stability, especially near lean blowout (LBO), to ensure an adequate stability margin. For an aeroengine, combustor blow-off limits are encountered during low engine speeds at high altitudes over a range of flight Mach numbers. For an industrial combustor, requirements of ultra-low NOx emissions coupled with high combustion efficiency demand operation at or close to LBO. In this investigation, a step swirl combustor (SSC) was designed to reproduce the swirling flow pattern present in the vicinity of the fuel injector located in the primary zone of a gas turbine combustor. Different flame shapes, structure and location were observed and detailed experimental measurements and numerical computations were performed. It was found that certain combinations of outer and inner swirling air flows produce multiple attached flames, a flame with a single attached structure just above the fuel injection tube, and finally for higher inner swirl velocity, the flame lifts from the fuel tube and is stabilized by the inner recirculation zone. The observed difference in LBO between co- and counter-swirl configurations is primarily a function of how the flame stabilizes i.e., attached vs. lifted. A turbulent combustion model correctly predicts the attached flame location(s), development of inner recirculation zone, a dimple-shaped flame structure, the flame lift-off height, and radial profiles of mean temperature, axial velocity, and tangential velocity at different axial locations. Finally, the significance and applications of anchored and lifted flames to combustor stability and LBO in practical gas turbine combustors are discussed.


1976 ◽  
Vol 98 (1) ◽  
pp. 15-22
Author(s):  
K. Yamanaka ◽  
K. Nagato

Recent papers describe that an airblast fuel atomizer is very effective for reducing emissions from a gas turbine and this type of fuel injector is being applied to practical engines. This paper deals with the new type of airblast fuel atomizer AFIT which comes from “Airblast Fuel Injection Tube” that makes fuel to break up into droplets by atomizing air at several small holes on the tube wall and fuel is well mixed with atomizing air instantly at the exits of holes. Regarding this AFIT, the fuel spray characteristics, combustion stability which is usually narrow for the combustor with an airblast fuel atomizer at lower engine speeds and exhaust emission levels are experimented and its effectiveness is discussed.


Author(s):  
Ivan R. Sigfrid ◽  
Ronald Whiddon ◽  
Abdallah Abou-Taouk ◽  
Robert Collin ◽  
Jens Klingmann

In the interest of understanding the prospects and restrictions of fuel flexibility in a prototype industrial gas turbine combustor, an experimental study is performed. Methane is used to characterize standard gas turbine operation; in addition a non-standard fuel is explored, generic syngas (67.5 % hydrogen, 22.5 % carbon monoxide and 10 % methane). Both these gases are also investigated after dilution with Nitrogen to a Wobbe index of 15 MJ/m3. All measurements are conducted at a preheat temperature of 650 K to mimic gas turbine conditions. The pressure is atmospheric. The burner examined is a downscaled industrial 4th generation DLE (dry low emissions) burner. This swirl-stabilized burner features three concentric sectors: the RPL (rich-pilot-lean), the Pilot and the Main. The burner is designed to be coupled with a quartz combustion liner allowing a variety of laser and optical diagnostics, including PIV (Particle Image Velocimetry) and OH-pLIF (planar Laser Induced Florescence). The mentioned techniques are used herein for identification of combustion and flow phenomena. For this study the measurement region is located at the burner recirculation zone. CFD (RANS) calculations are compared with the OH-pLIF images to identify the zones of active combustion. CFD is also used to see the effect of recirculation zone position when moving towards the lean blow out limit. Additionally, integral scales are calculated for each of the combustion cases and from these, the Kolmogorov scales are estimated. The flow field, imaged by PIV, shows that the recirculation zone location along the major flow axis is strongly dependent on the presence of combustion.


2008 ◽  
Vol 3 (1) ◽  
pp. 204-215
Author(s):  
Kousaku YOTORIYAMA ◽  
Shunsuke AMANO ◽  
Hidetomo FUJIWARA ◽  
Tomohiko FURUHATA ◽  
Masataka ARAI

Author(s):  
Tao Ren ◽  
Michael F. Modest ◽  
Somesh Roy

Radiative heat transfer is studied numerically for reacting swirling flow in an industrial gas turbine burner operating at a pressure of 15 bar. The reacting field characteristics are computed by Reynolds-averaged Navier-Stokes (RANS) equations using the k-ε model with the partially stirred reactor (PaSR) combustion model. The GRI-Mech 2.11 mechanism, which includes nitrogen chemistry, is used to demonstrate the the ability of reducing NOx emissions of the combustion system. A Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model is employed to accurately account for the radiation effects. CO2, H2O and CO are assumed to be the only radiatively participating species and wall radiation is considered as well. Optically thin and PMC-gray models are also employed to show the differences between the simplest radiative calculation models and the most accurate radiative calculation model, i.e., PMC-LBL, for the gas turbine burner. It was found that radiation does not significantly alter the temperature level as well as CO2 and H2O concentrations. However, it has significant impacts on the NOx levels at downstream locations.


Author(s):  
K. O. Smith ◽  
A. Fahme

Three subscale, cylindrical combustors were rig tested on natural gas at typical industrial gas turbine operating conditions. The intent of the testing was to determine the effect of combustor liner cooling on NOx and CO emissions. In order of decreasing liner cooling, a metal louvre-cooled combustor, a metal effusion-cooled combustor, and a backside-cooled ceramic (CFCC) combustor were evaluated. The three combustors were tested using the same lean-premixed fuel injector. Testing showed that reduced liner cooling produced lower CO emissions as reaction quenching near the liner wall was reduced. A reduction in CO emissions allows a reoptimization of the combustor air flow distribution to yield lower NOx emissions.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 126 ◽  
Author(s):  
Kai Zhang ◽  
Ali Ghobadian ◽  
Jamshid M. Nouri

The scale-resolving simulation of a practical gas turbine combustor is performed using a partially premixed finite-rate chemistry combustion model. The combustion model assumes finite-rate chemistry by limiting the chemical reaction rate with flame speed. A comparison of the numerical results with the experimental temperature and species mole fraction clearly showed the superiority of the shear stress transport, K-omega, scale adaptive turbulence model (SSTKWSAS). The model outperforms large eddy simulation (LES) in the primary region of the combustor, probably for two reasons. First, the lower amount of mesh employed in the simulation for the industrial-size combustor does not fit the LES’s explicit mesh size dependency requirement, while it is sufficient for the SSTKWSAS simulation. Second, coupling the finite-rate chemistry method with the SSTKWSAS model provides a more reasonable rate of chemical reaction than that predicted by the fast chemistry method used in LES simulation. Other than comparing with the LES data available in the literature, the SSTKWSAS-predicted result is also compared comprehensively with that obtained from the model based on the unsteady Reynolds-averaged Navier–Stokes (URANS) simulation approach. The superiority of the SSTKWSAS model in resolving large eddies is highlighted. Overall, the present study emphasizes the effectiveness and efficiency of coupling a partially premixed combustion model with a scale-resolving simulation method in predicting a swirl-stabilized, multi-jets turbulent flame in a practical, complex gas turbine combustor configuration.


Author(s):  
Ayesha Almheiri ◽  
Lyes Khezzar ◽  
Mohamed Alshehhi ◽  
Saqib Salam ◽  
Afshin Goharzadeh

Abstract Stereo-PIV is used to map turbulent strongly swirling flow inside a pipe connected to a closed recirculating system with a transparent test section of 0.6 m in length and a pipe diameter of 0.041 m. The Perspex pipe was immersed inside a water trough to reduce the effects of refraction. The working fluid was water and the Reynolds number based on the bulk average velocity inside the pipe and pipe diameter was equal to 14,450. The turbulent flow proceeds in the downstream direction and interacts with a circular disk. The measurements include instantaneous velocity vector fields and radial profiles of the mean axial, radial and tangential components of the velocity in the regions between the swirler exit and circular disk and around this later. The results for mean axial velocity show a symmetric behavior with a minimum reverse flow velocity along the centerline. As the flow developed along the pipe’s length, the intensity of the reversed flow was reduced and the intensity of the swirl decays. The mean tangential velocity exhibits a Rankine-vortex distribution and reached its maximum around half of the pipe’s radius. As the flow approaches the disk, the flow reaches stagnation and a complex flow pattern of vortices is formed. The PIV results are contrasted with LDV measurements of mean axial and tangential velocity. Good agreement is shown over the mean velocity profiles.


Sign in / Sign up

Export Citation Format

Share Document