Reliability-Based Optimization With Discrete and Continuous Decision and Random Variables

2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Mark McDonald ◽  
Sankaran Mahadevan

Engineering design problems frequently involve both discrete and continuous random and design variables, and system reliability may depend on the union or intersection of multiple limit states. Solving reliability-based design optimization (RBDO) problems, where some or all of the decision variables must be integer valued, can be expensive since the computational effort increases exponentially with the number of discrete variables in discrete optimization problems, and the presence of both system and component level reliability makes RBDO more expensive. The presence of discrete random variables in a RBDO problem has usually necessitated the use of Monte Carlo simulation or some other type of enumeration procedure, both of which are computationally expensive. In this paper, the theorem of total probability is used to allow for the use of the first-order reliability method in solving mixed-integer RBDO problems. Single-loop RBDO formulations are developed for three classes of mixed-integer RBDO with both discrete and continuous random variables and component and system-level reliability constraints. These problem formulations can be solved with any appropriate discrete optimization technique. This paper develops, for each of the three problem classes, greedy algorithms to find an approximate solution to the mixed-integer RBDO problem with both component and system reliability constraints and/or objectives. These greedy algorithms are based on the solution of a relaxed formulation and require hardly additional computational expense than that required for the solution of the continuous RBDO problem. The greedy algorithms are verified by branch and bound and genetic algorithms. Also, this paper develops three algorithms, which can allow for calibration of reliability estimation with a more accurate reliability analysis technique. These algorithms are illustrated in the context of a truss optimization problem.

Author(s):  
Xiao-Ling Zhang ◽  
Hong-Zhong Huang ◽  
Zhong-Lai Wang ◽  
Pei-Nan Ge

Due to the degradation, input loading and uncertainty in the design parameters usually involve random variables and random processes, reliability analysis for engineering design problems are usually time dependent. Many problems related to degradation have been treated as monotonic or statistically independent, therefore, the probability of failure only at the end of the lifetime of the structure are considered. To the issues of parameters with stochastic process, the outcrossing rate methods have been extensively developed to calculate the upper bound of time-dependent reliability. In these methods, the issue of proper choice of time interval is crucial and difficult. In this paper, a new method for time dependent reliability optimization based on the total probability theory and universal generating function is proposed. In the proposed method, firstly, Parameters with stochastic processes are discretized into some discrete random variables. Secondly, the discrete parameters are reformed into a new random process by the operation of the universal generating functions. Finally, based on the total probability theory, the probability of failure for each limit state function is analyzed using sequential optimization and time invariant reliability assessment method. Only the time invariant reliability method is needed in the proposed method, by conditioning the continuous random variables on the discrete random parameters. Numerical example is presented to demonstrate the performance of the proposed method.


Author(s):  
Zhengwei Hu ◽  
Xiaoping Du

System reliability is usually predicted with the assumption that all component states are independent. This assumption may not accurate for systems with outsourced components since their states are strongly dependent and component details may be unknown. The purpose of this study is to develop an accurate system reliability method that can produce complete joint probability density function (PDF) of all the component states, thereby leading to accurate system reliability predictions. The proposed method works for systems whose failures are caused by excessive loading. In addition to the component reliability, system designers also ask for partial safety factors for shared loadings from component suppliers. The information is then sufficient for building a system-level joint PDF. Algorithms are designed for a component supplier to generate partial safety factors. The method enables accurate system reliability predictions without requiring proprietary information from component suppliers.


Author(s):  
Zhengwei Hu ◽  
Xiaoping Du

System reliability is usually predicted with the assumption that all component states are independent. This assumption is particularly useful for systems with outsourced components. The assumption, however, may produce large errors in the system reliability prediction since many component states are strongly dependent. The purpose of this study is to develop an accurate system reliability method that can produce complete joint probability density function (PDF) of all the component states, thereby leading to accurate system reliability predictions. The proposed method works for systems whose failures are caused by excessive loading. In addition to the component reliability, system designers also ask for partial safety factors for shared loadings from component suppliers. The information is then sufficient for building a system-level joint PDF. Algorithms are designed for a component supplier to generate partial safety factors, which enables accurate system reliability predictions without requiring proprietary information from component suppliers.


Author(s):  
Zhen Hu ◽  
Zhifu Zhu ◽  
Xiaoping Du

Time-dependent system reliability is computed as the probability that the responses of a system do not exceed prescribed failure thresholds over a time duration of interest. In this work, an efficient time-dependent reliability analysis method is proposed for systems with bivariate responses which are general functions of random variables and stochastic processes. Analytical expressions are derived first for the single and joint upcrossing rates based on the first-order reliability method (FORM). Time-dependent system failure probability is then estimated with the computed single and joint upcrossing rates. The method can efficiently and accurately estimate different types of upcrossing rates for the systems with bivariate responses when FORM is applicable. In addition, the developed method is applicable to general problems with random variables, stationary, and nonstationary stochastic processes. As the general system reliability can be approximated with the results from reliability analyses for individual responses and bivariate responses, the proposed method can be extended to reliability analysis of general systems with more than two responses. Three examples, including a parallel system, a series system, and a hydrokinetic turbine blade application, are used to demonstrate the effectiveness of the proposed method.


2014 ◽  
Vol 50 ◽  
pp. 57-65 ◽  
Author(s):  
Ning-Cong Xiao ◽  
Yan-Feng Li ◽  
Yuanjian Yang ◽  
Le Yu ◽  
Hong-Zhong Huang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shengjun Ren ◽  
Shuai Yang ◽  
Adrian Wonfor ◽  
Ian White ◽  
Richard Penty

AbstractWe present an experimental demonstration of the feasibility of the first 20 + Mb/s Gaussian modulated coherent state continuous variable quantum key distribution system with a locally generated local oscillator at the receiver (LLO-CVQKD). To increase the signal repetition rate, and hence the potential secure key rate, we equip our system with high-performance, wideband devices and design the components to support high repetition rate operation. We have successfully trialed the signal repetition rate as high as 500 MHz. To reduce the system complexity and correct for any phase shift during transmission, reference pulses are interleaved with quantum signals at Alice. Customized monitoring software has been developed, allowing all parameters to be controlled in real-time without any physical setup modification. We introduce a system-level noise model analysis at high bandwidth and propose a new ‘combined-optimization’ technique to optimize system parameters simultaneously to high precision. We use the measured excess noise, to predict that the system is capable of realizing a record 26.9 Mb/s key generation in the asymptotic regime over a 15 km signal mode fibre. We further demonstrate the potential for an even faster implementation.


1980 ◽  
Vol 12 (01) ◽  
pp. 200-221 ◽  
Author(s):  
B. Natvig

In this paper we arrive at a series of bounds for the availability and unavailability in the time interval I = [t A , t B ] ⊂ [0, ∞), for a coherent system of maintained, interdependent components. These generalize the minimal cut lower bound for the availability in [0, t] given in Esary and Proschan (1970) and also most bounds for the reliability at time t given in Bodin (1970) and Barlow and Proschan (1975). In the latter special case also some new improved bounds are given. The bounds arrived at are of great interest when trying to predict the performance process of the system. In particular, Lewis et al. (1978) have revealed the great need for adequate tools to treat the dependence between the random variables of interest when considering the safety of nuclear reactors. Satyanarayana and Prabhakar (1978) give a rapid algorithm for computing exact system reliability at time t. This can also be used in cases where some simpler assumptions on the dependence between the components are made. It seems, however, impossible to extend their approach to obtain exact results for the cases treated in the present paper.


Author(s):  
J.-F. Fu ◽  
R. G. Fenton ◽  
W. L. Cleghorn

Abstract An algorithm for solving nonlinear programming problems containing integer, discrete and continuous variables is presented. Based on a commonly employed optimization algorithm, penalties on integer and/or discrete violations are imposed on the objective function to force the search to converge onto standard values. Examples are included to illustrate the practical use of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document