A Mechanistic Model for Solder Joint Failure Prediction Under Thermal Cycling
A mechanistic model for eutectic Pb/Sn solder life predictions has been developed and applied to leadless surface mount solder joints. This model can quantitatively describe both crack initiation and crack propagation processes in the solder. There are four parts to this model: a crack initiation model, a crack propagation model [1], a microstructural coarsening model and an analysis of the deformation in the solder during thermal cycling. By merging these models together, it is possible to predict the time to crack initiation and the time to failure of these solder joints. Solder joint life predictions show good agreement with data obtained on thermally cycled surface mount leadless chip resistors.