scholarly journals Gender Differences in Capitate Kinematics are Eliminated After Accounting for Variation in Carpal Size

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Michael J. Rainbow ◽  
Joseph J. Crisco ◽  
Douglas C. Moore ◽  
Scott W. Wolfe

Previous studies have found gender differences in carpal kinematics, and there are discrepancies in the literature on the location of the flexion∕extension and radio-ulnar deviation rotation axes of the wrist. It has been postulated that these differences are due to carpal bone size differences rather than gender and that they may be resolved by normalizing the kinematics by carpal size. The purpose of this study was to determine if differences in radio-capitate kinematics are a function of size or gender. We also sought to determine if a best-fit pivot point (PvP) describes the radio-capitate joint as a ball-and-socket articulation. By using an in vivo markerless bone registration technique applied to computed tomography scans of 26 male and 28 female wrists, we applied scaling derived from capitate length to radio-capitate kinematics, characterized by a best-fit PvP. We determined if radio-capitate kinematics behave as a ball-and-socket articulation by examining the error in the best-fit PvP. Scaling PvP location completely removed gender differences (P=0.3). This verifies that differences in radio-capitate kinematics are due to size and not gender. The radio-capitate joint did not behave as a perfect ball and socket because helical axes representing anatomical motions such as flexion-extension, radio-ulnar deviation, dart throwers, and antidart throwers, were located at distances up to 4.5mm from the PvP. Although the best-fit PvP did not yield a single center of rotation, it was still consistently found within the proximal pole of the capitate, and rms errors of the best-fit PvP calculation were on the order of 2mm. Therefore, the ball-and-socket model of the wrist joint center using the best-fit PvP is appropriate when considering gross motion of the hand with respect to the forearm such as in optical motion capture models. However, the ball-and-socket model of the wrist is an insufficient description of the complex motion of the capitate with respect to the radius. These findings may aid in the design of wrist external fixation and orthotics.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Gordon M. Best ◽  
Michelle L. Zec ◽  
David R. Pichora ◽  
Robin N. Kamal ◽  
Michael J. Rainbow

Previous two-dimensional (2D) studies have shown that there is a spectrum of carpal mechanics that varies between row-type motion and column-type motion as a function of wrist laxity. More recent three-dimensional (3D) studies have suggested instead that carpal bone motion is consistent across individuals. The purpose of this study was to use 3D methods to determine whether carpal kinematics differ between stiffer wrists and wrists with higher laxity. Wrist laxity was quantified using a goniometer in ten subjects by measuring passive wrist flexion–extension (FE) range of motion (ROM). In vivo kinematics of subjects' scaphoid and lunate with respect to the radius were computed from computed tomography (CT) volume images in wrist radial and ulnar deviation positions. Scaphoid and lunate motion was defined as “column-type” if the bones flexed and extended during wrist radial–ulnar deviation (RUD), and “row-type” if the bones radial–ulnar deviated during wrist RUD. We found that through wrist RUD, the scaphoid primarily flexed and extended, but the scaphoids of subjects with decreased laxity had a larger component of RUD (R2 = 0.48, P < 0.05). We also determined that the posture of the scaphoid in the neutral wrist position predicts wrist radial deviation (RD) ROM (R2 = 0.46, P < 0.05). These results suggest that ligament laxity plays a role in affecting carpal bone motion of the proximal row throughout radial and ulnar deviation motions; however, other factors such as bone position may also affect motion. By developing a better understanding of normal carpal kinematics and how they are affected, this will help physicians provide patient-specific approaches to different wrist pathologies.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Bardiya Akhbari ◽  
Amy M. Morton ◽  
Douglas C. Moore ◽  
Arnold-Peter C. Weiss ◽  
Scott W. Wolfe ◽  
...  

Total wrist arthroplasty (TWA) for improving the functionality of severe wrist joint pathology has not had the same success, in parameters such as motion restoration and implant survival, as hip, knee, and shoulder arthroplasty. These other arthroplasties have been studied extensively, including the use of biplane videoradiography (BVR) that has allowed investigators to study the in vivo motion of the total joint replacement during dynamic activities. The wrist has not been a previous focus, and utilization of BVR for wrist arthroplasty presents unique challenges due to the design characteristics of TWAs. Accordingly, the aims of this study were (1) to develop a methodology for generating TWA component models for use in BVR and (2) to evaluate the accuracy of model-image registration in a single cadaveric model. A model of the carpal component was constructed from a computed tomography (CT) scan, and a model of the radial component was generated from a surface scanner. BVR was acquired for three anatomical tasks from a cadaver specimen. Optical motion capture (OMC) was used as the gold standard. BVR's bias in flexion/extension, radial/ulnar deviation, and pronosupination was less than 0.3 deg, 0.5 deg, and 0.6 deg. Translation bias was less than 0.2 mm with a standard deviation of less than 0.4 mm. This BVR technique achieved a kinematic accuracy comparable to the previous studies on other total joint replacements. BVR's application to the study of TWA function in patients could advance the understanding of TWA, and thus, the implant's success.


2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Ian T. Gatt ◽  
Tom Allen ◽  
Jon Wheat

AbstractThe hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate (< 0.2°) and quasi-static testing (< 6°). Both systems showed a good intraclass coefficient of reliability (ICCs > 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system.


1993 ◽  
Vol 18 (5) ◽  
pp. 609-612 ◽  
Author(s):  
G. R. SENNWALD ◽  
V. ZDRAVKOVIC ◽  
H. A. C. JACOB ◽  
H. P. KERN

The motions of the scaphoid and triquetrum relative to the lunate have been studied on cadaver specimens. The helical axis concept was applied. The wrist motions performed were flexion-extension and radial-ulnar deviation. The results showed increased relative motion of the scaphoid towards terminal extension, and to a lesser amount in the case of the triquetrum, towards terminal flexion. The lunate might be considered as a keystone in the proximal carpal row when wrist stability is considered. It is doubly intercalated: longitudinally and transversely. Wrist ligaments co-ordinate the positioning of the bones in the mid-range of carpal motions, and restrict further motion in extreme positions of the wrist joint.


2012 ◽  
Vol 108 (4) ◽  
pp. 1158-1166 ◽  
Author(s):  
Domenico Formica ◽  
Steven K. Charles ◽  
Loredana Zollo ◽  
Eugenio Guglielmelli ◽  
Neville Hogan ◽  
...  

Because wrist rotation dynamics are dominated by stiffness (Charles SK, Hogan N. J Biomech 44: 614–621, 2011), understanding how humans plan and execute coordinated wrist rotations requires knowledge of the stiffness characteristics of the wrist joint. In the past, the passive stiffness of the wrist joint has been measured in 1 degree of freedom (DOF). Although these 1-DOF measurements inform us of the dynamics the neuromuscular system must overcome to rotate the wrist in pure flexion-extension (FE) or pure radial-ulnar deviation (RUD), the wrist rarely rotates in pure FE or RUD. Instead, understanding natural wrist rotations requires knowledge of wrist stiffness in combinations of FE and RUD. The purpose of this report is to present measurements of passive wrist stiffness throughout the space spanned by FE and RUD. Using a rehabilitation robot designed for the wrist and forearm, we measured the passive stiffness of the wrist joint in 10 subjects in FE, RUD, and combinations. For comparison, we measured the passive stiffness of the forearm (in pronation-supination), as well. Our measurements in pure FE and RUD agreed well with previous 1-DOF measurements. We have linearized the 2-DOF stiffness measurements and present them in the form of stiffness ellipses and as stiffness matrices useful for modeling wrist rotation dynamics. We found that passive wrist stiffness was anisotropic, with greater stiffness in RUD than in FE. We also found that passive wrist stiffness did not align with the anatomical axes of the wrist; the major and minor axes of the stiffness ellipse were rotated with respect to the FE and RUD axes by ∼20°. The direction of least stiffness was between ulnar flexion and radial extension, a direction used in many natural movements (known as the “dart-thrower's motion”), suggesting that the nervous system may take advantage of the direction of least stiffness for common wrist rotations.


2010 ◽  
Vol 26 (3) ◽  
pp. 305-315 ◽  
Author(s):  
Aaron Chin ◽  
David Lloyd ◽  
Jacqueline Alderson ◽  
Bruce Elliott ◽  
Peter Mills

The predominance of upper-limb elbow models have been based on earlier lower-limb motion analysis models. We developed and validated a functionally based 2 degree-of-freedom upper-limb model to measure rotations of the forearm using a marker-based approach. Data were collected from humans and a mechanical arm with known axes and ranges of angular motion in 3 planes. This upper-limb model was compared with an anatomically based model following the proposed ISB standardization. Location of the axes of rotation relative to each other was determined in vivo. Data indicated that the functional model was not influenced by cross-talk from adduction-abduction, accurately measuring flexion-extension and pronation-supination. The functional flexion-extension axis in vivo is angled at 6.6° to the anatomical line defined from the humeral medial to lateral epicondyles. The pronation-supination axis intersected the anatomically defined flexion-extension axis at 88.1°. Influence of cross-talk on flexion-extension kinematics in the anatomical model was indicated by strong correlation between flexion-extension and adduction-abduction angles for tasks performed by the subjects. The proposed functional model eliminated cross-talk by sharing a common flexion axis between the humerus and forearm. In doing so, errors due to misalignment of axes are minimized providing greater accuracy in kinematic data.


Author(s):  
Bryan Buchholz ◽  
Helen Wellman

The objectives of this study were: 1) to determine errors in wrist angle measurements from a commercially-available biaxial electrogoniometer and 2) to develop a calibration routine in order to correct for these errors. Goniometric measurements were simultaneously collected with true angular data using a fixture that allowed wrist movement in one plane while restricting motion in the orthogonal plane. These data were collected in two sets of trials: 1) flexion/extension with radial/ulnar deviation restricted and 2) radial/ulnar deviation with flexion/extension restricted. During these trials, discrete 30 degree increments of forearm rotation were studied. The results showed the expected cross talk and zero drift errors during forearm rotation. The application of mathematical equations that describe the effect of goniometer twist during forearm rotation resulted in significant error reduction for most trials. The calibration technique employs both a slope and a displacement transformation to improve the accuracy of angular data. The calibration technique may be used on data collected in the field if forearm rotation is measured simultaneously with the goniometer data.


1982 ◽  
Vol 104 (3) ◽  
pp. 176-181 ◽  
Author(s):  
R. B. Brumbaugh ◽  
R. D. Crowninshield ◽  
W. F. Blair ◽  
J. G. Andrews

The motion of the hand relative to a reference frame embedded in the radius is described using the screw displacement axis (SDA) concept. A three-dimensional sonic digitizer was utilized in a study of the dominant wrist of 15 normal subjects to determine the location and orientation of the SDAs based on the endpoints of flexion-extension motion (FEM) and radial-ulnar deviation (RUD) of the hand. The length of the common perpendicular between the SDAs of FEM and RUD was as large as 6 mm in some individuals; however, in some subjects the FEM SDA was distal of the RUD SDA while in others it was proximal. Considering the group of 15 subjects, the SDAs of FEM and RUD for the normal group nearly intersect in the head of the capitate in the neutrally positioned wrist and forearm.


Sign in / Sign up

Export Citation Format

Share Document