Buckle Propagation Pressure for Submarine Pipelines

1993 ◽  
Vol 115 (3) ◽  
pp. 162-166 ◽  
Author(s):  
G. D. Hahn ◽  
M. She ◽  
J. F. Carney

A new analytical expression is proposed for the prediction of the buckle propagation pressure for deepwater offshore pipelines. The expression accounts for the influences of the main factors involved, including the effects of material and geometrical nonlinearities. Predictions of the proposed expression are shown to be in good agreement with available experimental data, and valuable information is developed that can guide applications of the expression in design practice. In addition, a discussion is presented which outlines the derivation of the proposed expression.

1977 ◽  
Vol 5 (1) ◽  
pp. 6-28 ◽  
Author(s):  
A. L. Browne

Abstract An analytical tool is presented for the prediction of the effects of changes in tread pattern design on thick film wet traction performance. Results are reported for studies in which the analysis, implemented on a digital computer, was used to determine the effect of different tread geometry features, among these being the number, width, and lateral spacing of longitudinal grooves and the angle of zigzags in longitudinal grooves, on thick film wet traction. These results are shown to be in good agreement with experimental data appearing in the literature and are used to formulate guidelines for tread groove network design practice.


Author(s):  
In-Hwan Yang ◽  
Mohamed S. El-Genk

Numerical calculations are performed to investigate the effect of viscous dissipation on the temperature rise and friction numbers for laminar water flows in micro-tubes. The calculated values are compared with those determined from reported experimental data for glass and diffused silica micro-tubes (D = 16 – 101 μm and L/D = 625 – 1479). The results confirm a definite slip at the wall with slip lengths of ∼ 0.7 μm and 1.0 μm, which decrease the friction number and the temperature rise in the micro-tubes, but their effect gradually diminishes as either D or L/D increases. The friction number decreases exponentially as D decreases and, to a lesser extent, as L/D increases. The effect of L/D on the friction number is insignificant for micro-tube diameters ≤ 20 μm. For D > 400 μm, the friction number approaches that of Hagen-Posieuille of 64 for macro-tubes when L/D > 1500, but approaches higher values at smaller L/D. The dimensionless analytical expression developed for calculating the friction number and the temperature rise for water flows in micro-tubes is in good agreement with both the numerical and experimental results.


1967 ◽  
Vol 29 (2) ◽  
pp. 385-390 ◽  
Author(s):  
Barry T. Lubin ◽  
George S. Springer

Experiments were performed studying the formation of a dip on the surface of an initially stationary liquid draining from a cylindrical tank through an axisym-metrically placed circular orifice. Based upon the information obtained from the experiments, a simple analytical expression was derived predicting the height of the liquid surface in the tank at which this dip forms. A comparison was made between the experimental data and the results of the analysis and good agreement was found between theory and data.


2013 ◽  
Vol 28 (23) ◽  
pp. 1350108 ◽  
Author(s):  
M. GOKBULUT ◽  
H. KOC ◽  
E. ESER ◽  
I. YIGITOGLU ◽  
B. A. MAMEDOV

In this study, the neutron and proton density distributions of 208 Pb nucleus have been analytically calculated by using a new, simple and physically meaningful analytical expression obtained for the Fermi integral which is situated in the nucleon density distributions. The results obtained for 208 Pb have been compared with those of the other theoretical and experimental data and found in good agreement.


Author(s):  
A. M. Sipatov ◽  
N. V. Gladisheva ◽  
V. G. Avgustinovich ◽  
I. A. Povishev

The problem of obtaining adequate aerodynamical boundary conditions for an analyzed blade is important to predict resonant stresses. According to this, three different CFD approaches of stator-rotor modeling have been investigated for obtaining gas dynamic loading: 1. 3D averaged and then quasi-3D unsteady calculations. 2. Fully 3D unsteady calculations using commercial CFX solver. 3. Fully 3D unsteady calculations using the in-house solver. To carry out 3D structural analysis the ANSYS software and our subroutines have been applied. The methodology to estimate damper ratio for the different mode shapes and mode numbers has been developed. As a result, the tools to predict the resonant stress have been created where we tried to take into account all main factors affecting resonant stress level. The HPT first stage blade of a modern aircraft engine was chosen as an example of using our tools for prediction of resonant stresses level. A comparison of experimental data and obtained calculation results showed good agreement.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


2015 ◽  
Vol 11 (3) ◽  
pp. 3224-3228
Author(s):  
Tarek El-Ashram

In this paper we derived a new condition of formation and stability of all crystalline systems and we checked its validity andit is found to be in a good agreement with experimental data. This condition is derived directly from the quantum conditionson the free electron Fermi gas inside the crystal. The new condition relates both the volume of Fermi sphere VF andvolume of Brillouin zone VB by the valence electron concentration VEC as ;𝑽𝑭𝑽𝑩= 𝒏𝑽𝑬𝑪𝟐for all crystalline systems (wheren is the number of atoms per lattice point).


1982 ◽  
Vol 14 (4-5) ◽  
pp. 253-256
Author(s):  
N Sriramula ◽  
M Chaudhuri

An investigation was undertaken on the removal of a model virus, bacterial virus MS2 against Escherichia coli, by sand filtration using untreated, and alum or cationic polyelectrolyte treated media, and uncoagulated as well as alum coagulated influent. Data on discrete virus removal were satisfactorily accounted for by electrokinetic phenomena and diffusion. For virus in association with turbidity, filter coefficients computed from experimental data were in good agreement with those predicted by mechanical straining and gravity settling which were the dominant mechanisms for removal of the turbidity particles to which the viruses attached.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Sign in / Sign up

Export Citation Format

Share Document