Fatigue and Creep-Fatigue Life Evaluation of U-Shaped Bellows

1992 ◽  
Vol 114 (3) ◽  
pp. 280-291 ◽  
Author(s):  
K. Tsukimori ◽  
T. Yamashita ◽  
M. Kikuchi ◽  
K. Iwata ◽  
A. Imazu

For the reliable operation of bellows under cyclic loadings at high temperatures, a rational evaluation method of life of bellows would be needed. Authors investigated simplified analysis methods for fatigue and creep-fatigue life prediction of U-shaped bellows considering inelasticity as well as various geometrical nonuniformity such as thickness and shape of convolutions. A conservative evaluation method of the strain range is developed, introducing three strain range amplification factors for nominal elastic strain range. Creep and relaxation behaviors of bellows are studied. Consequently, a new evaluation method of creep damage fractions is proposed which depends upon the relation between primary and secondary stresses. Fatigue and creep-fatigue tests are conducted and the validity of the present methods is discussed.

Author(s):  
Satoshi Okajima ◽  
Nobuchika Kawasaki ◽  
Shoichi Kato ◽  
Naoto Kasahara

In this paper, for the application to the Japan Sodium-cooled Fast Reactor, JSFR, the creep-fatigue damage evaluation method is improved to consider the intermediate holding condition. The improved method is validated through both of the uni-axial and the structure model creep-fatigue tests. In these validations, the target material is 316FR steel, which is planned to use for the reactor vessel. The reactor vessel portion near the liquid sodium surface is one of the most probable points where the creep-fatigue damage is considerable. Because of the relaxation of the temperature gradient, the steady operation stress on the portion near the liquid sodium surface is less than the maximum stress in the transient. In the conventional method, in order to evaluate the creep damage conservatively, the maximum tensile value in the thermal stress transient cycle is used as the initial stress. The improved method evaluates the creep damage using the lower initial stress than the conventional method, while it has the rational margin. For the validation of the improved method, uni-axial creep-fatigue tests and structure model tests are carried out. A series of uni-axial creep-fatigue tests was carried out in the following conditions: 600 degree C testing temperature, 1% total strain range, 1 hour holding time, vacuum or air environments, and the various holding position. While the test environment affects the fatigue damage, it didn’t have significant effect on the creep damage. In the cases with high holding position, the creep damages were evaluated based on the given initial stress with high precision. In the other cases, by the assumption of the steady-stress existence, the rational margin is given for the evaluation. Furthermore, in the design stage, the evaluated creep-fatigue damage has enough margins derived from the conservative evaluation of the initial stress. The structural tests modeled the movement of the liquid sodium surface in the start-up and the shut-down stages, and the relaxation of the temperature gradient in the operation stage. In these tests, the temperature distribution was given by coolant water and an external high-frequency heating coil for the cylindrical specimen, and moved in the axial direction. In addition, the primary stress, which was caused by the weight of the reactor vessel, was given by the screw jack. As a result, using the strain range evaluated by the elastic analysis, the improved method evaluated the crack initiation life due to the creep-fatigue damage with the sufficient safety margin. In the case when the strain range was evaluated by the elastic-plastic analysis, the method predicted the crack initiation life with the good precision. While the evaluation of the crack penetration life was possible, further examination was desired for the precision improvement.


Author(s):  
Masanori Ando ◽  
Yuichi Hirose ◽  
Takanori Karato ◽  
Sota Watanabe ◽  
Osamu Inoue ◽  
...  

In a component design at elevated temperature, creep-fatigue is one of the most important failure modes, and assessment of creep-fatigue life in structural discontinuity is important issue to evaluate structural integrity of the components. Therefore a lot of creep-fatigue life evaluation methods were proposed until now. To compare and assess these evaluation methods, a series of creep-fatigue tests was carried out with notched specimens. All the specimens were made of Mod.9Cr-1Mo steel, which it is a candidate material for a primary and secondary heat transport system components of JSFR (Japan Sodium-cooled Fast Reactor). Mechanical creep-fatigue tests and thermal creep-fatigue tests were performed by using conventional uni-axial push-pull fatigue test machine and thermal gradient generating system with an induction heating coil. Stress concentration levels were adjusted by varying the diameters of notch roots in the both tests. In the test, creep-fatigue lives, crack initiation and propagation processes were observed by digital micro-scope and replica method. Besides those, a series of elastic Finite Element Analysis (FEA) were carried out to predict the number of cycles to failure by several creep-fatigue life evaluation methods. Then these predictions were compared with test results. Several types of evaluation methods which are stress redistribution locus (SRL) method, simple elastic follow-up method and the methods described in JSME FR (Fast Reactor) code were applied. The applicability and conservativeness of these methods were discussed. It was appeared that SRL method gave rational prediction of creep-fatigue life with conservativeness when the factor of κ = 1.6 was applied for all the conditions tested in this study. Comparison of SRL method and simple elastic follow-up method indicated that SRL method applied factor of κ = 1.6 gave the smallest creep-fatigue life in practicable stress level. JSME FR code gave an evaluation 70∼100 times conservative lives comparing with the test results.


2006 ◽  
Vol 321-323 ◽  
pp. 476-479
Author(s):  
Bum Joon Kim ◽  
Byeong Soo Lim ◽  
Sung Jin Song ◽  
Young H. Kim

This work investigates the relationship between the creep-fatigue life and ultrasonic test of creep-fatigue damage. Under the creep-fatigue interaction, the main cause of life reduction is the initiation and growth of microvoid with increasing hold time. The number/size of microvoid/cavity, the fraction of cavity area varied with the hold time. Therefore, the life evaluation using the microvoid with the variation of hold time is very informative for safety of components in power plants. In this study, using the heat resisting alloy, P122 steel for USC (ultra super critical) power plant, the creep-fatigue tests with various hold times and their ultrasonic inspection were carried out for the purpose of evaluation for creep-fatigue life. The results obtained by Rayleigh surface wave of backscattered ultrasound were compared and analyzed with the experimental parameters. The good agreement between the experimental life and the predicted life was obtained.


2005 ◽  
Vol 128 (2) ◽  
pp. 142-150 ◽  
Author(s):  
Mineo Nozaki ◽  
Masao Sakane ◽  
Yutaka Tsukada ◽  
Hideo Nishimura

This paper studies the creep-fatigue life evaluation of Sn-3.5Ag solder under push-pull loading using fast-fast, fast-slow, slow-fast, slow-slow, and strain-hold strain waves. Extensive creep-fatigue data were generated using these strain waves and the applicability of four conventional creep-fatigue damage rules, the linear damage rule, the frequency modified fatigue life, the ductility exhaustion model, and the strain range partitioning method, was examined. No conventional damage rules evaluated creep-fatigue lives accurately. Only the grain boundary sliding model, developed recently for solders, predicted creep-fatigue lives with a small scatter.


2021 ◽  
pp. 1-13
Author(s):  
Isamu Nonaka

In the component operated at elevated temperatures, the life evaluation should be made in consideration of both creep and fatigue (creep-fatigue) such as the linear damage summation rule. However, the concept of creep-fatigue life evaluation has not spread well in the industry. In order to consider the reason, a series of past creep-fatigue research was surveyed, namely experimental methods, life evaluation procedures and strength design guidelines. As a result, it was revealed that the mechanism of creep-fatigue interaction has not been fully clarified yet, which results in obscuring the necessity of creep-fatigue life evaluation. The necessity of creep-fatigue life evaluation was reviewed and consequently it proved to be necessary in two cases. One is the case where the creep-fatigue interaction is significant for some kinds of material, loading modes and temperatures. The other is one where the amount of creep damage is almost the same as that of fatigue damage even though the creep-fatigue interaction is insignificant.


Sign in / Sign up

Export Citation Format

Share Document