Basic Electrochemical Thermodynamic Studies of Fuel Cells Using MALT2

Author(s):  
M. Williams ◽  
T. Horita ◽  
K. Yamagi ◽  
N. Sakai ◽  
H. Yokokawa

There are at least four basic fuel cell thermodynamic features: maximum intrinsic thermal efficiency (electrical efficiency), reversible potential, and two new ones—intrinsic cooling requirement and intrinsic exergetic efficiency. A basic electrochemical thermodynamic analysis of fuel cells using MALT reveals that it is probably for thermodynamic reasons that cooling strategies other than excess oxidant, such as water cooling, have generally been adopted for lower temperature fuel cells such as polymer electrolyte fuel cell (PEFC) and phosphoric acid fuel cell (PAFC). One can mathematically demonstrate that for a simple hybrid system, any fuel cell, any operating temperature, and any pressure, the maximum reversible work is equal to the free energy of reaction at the standard state. This study gives information of new opportunity fuels having increasing importance is all future energy scenarios. The results of this analysis show that ammonia and direct methanol give greater maximum intrinsic thermal efficiency than hydrogen oxidation. From these simple studies alone, one would conclude that the great payoff in terms of theoretical efficiency potential for research is direct carbon fuel cell (DCFT), PEFC, and direct oxidation of methane, intermediate temperature solid oxide fuel cell (SOFC), and simple fuel cell turbine hybrids.

Polímeros ◽  
2008 ◽  
Vol 18 (4) ◽  
pp. 281-288 ◽  
Author(s):  
Carlos E. Perles

Embora não seja tecnologia recente, as células a combustível ou Fuel Cells (FC) continuam recebendo grande atenção, pois são consideradas como "fontes de energia do futuro" devido a características como alto rendimento energético e baixa emissão de poluentes, permitindo a extensão o tempo de vida das reservas fósseis e contribuindo para a melhoria da qualidade de vida. Atualmente, as pesquisas estão direcionadas, principalmente, ao desenvolvimento de FC para aplicações em sistemas móveis e portáteis. De todas as tecnologias existentes, a mais promissora para essa finalidade é a célula a combustível de eletrólito polimérico, conhecida como PEMFC (Polymer Electrolyte Fuel Cell) cuja pesquisa encontra-se focada, principalmente, no desenvolvimento de membranas poliméricas, com o objetivo de reduzir os custos de produção. Este trabalho será focado nos aspectos físico-químicos do desenvolvimento de membranas poliméricas. Serão discutidos aspectos estruturais do Nafion® relacionado-os as seguintes propriedades físico-químicas: fluxo eletrosmótico, permeabilidade gasosa, transporte de água através da membrana, estabilidade química e térmica. Toda a discussão será realizada para polímeros perfluorados, utilizando o Nafion® como modelo representante dessa classe de polímeros.


Author(s):  
Supramanian Srinivasan ◽  
Lakshmi Krishnan ◽  
Andrew B. Bocarsly ◽  
Kan-Lin Hsueh ◽  
Chiou-Chu Lai ◽  
...  

Investments of over $1 B have been made for Fuel Cell R&D over the past five decades, for space and terrestrial applications; the latter includes military, residential power and heating, transportation and remote and portable power. The types of fuel cells investigated for these applications are PEMFCs (proton exchange membrane fuel cells), AFCs (alkaline fuel cells), DMFCs (direct methanol fuel cells), PAFCs (phosphoric acid fuel cells), MCFCs (molten carbon fuel cells), SOFCs (solid oxide fuel cells). Cell structure, operating principles, and characteristics of each type of fuel cell is briefly compared. The performances of fuel cells vs. competing technologies are analyzed. The key issues are which of these energy conversion systems are technologically advanced and economically favorable and can meet the lifetime, reliability and safety requirements. This paper reviews fuel cells vs. competing technologies in each application category from a scientific and engineering point of view.


Author(s):  
Z. F. Zhou ◽  
R. Kumar ◽  
S. T. Thakur ◽  
L. R. Rudnick ◽  
H. Schobert ◽  
...  

Solid oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 hours for the waste vegetable oil without dilution. The generated power was up to 0.25 W/cm2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.


Author(s):  
K. Hemmes ◽  
M. Houwing ◽  
N. Woudstra

Direct Carbon Fuel Cells (DCFCs) have great thermodynamic advantages over other high temperature fuel cells such as MCFC and SOFC. They can have 100% fuel utilization, no Nernst loss (at the anode) and the CO2 produced at the anode is not mixed with other gases and is ready for reuse or sequestration. So far only studies have been reported on cell development. In this paper we study in particular the integration of the production of clean and reactive carbon particles from methane as a fuel for the direct carbon fuel cell. In the thermal decomposition process heat is upgraded to chemical energy in the carbon and hydrogen produced. The hydrogen is seen as a product as well as the power and heat. Under the assumptions given the net system electric efficiency is 22.9 % (based on methane LHV) and 20.7 % (HHV). The hydrogen production efficiency is 65.5 % (based on methane LHV) and 59.1 % (HHV), which leads to a total system efficiency of 88.4 % (LHV) and 79.8 % (HHV). Although a pure CO2 stream is produced at the anode outlet, which is seen as a large advantage of DCFC systems, this advantage is unfortunately reduced due to the need for CO2 in the cathode air stream. Due to the applied assumed constraint that the cathode outlet stream should at least contain 4% CO2 for a proper functioning of the cathode, similar to MCFC cathodes a major part of the pure CO2 has to be mixed with incoming air. Further optimization of the DCFC and the system is needed to obtain a larger fraction of the output streams as pure CO2 for sequestration or reuse.


2019 ◽  
Vol 21 (24) ◽  
pp. 13126-13134 ◽  
Author(s):  
J. Halter ◽  
T. Gloor ◽  
B. Amoroso ◽  
T. J. Schmidt ◽  
F. N. Büchi

The influence of phosphoric acid temperature and concentration on the wetting behavior of porous high temperature polymer electrolyte fuel cell materials is investigated.


Author(s):  
Chong-Fang Ma ◽  
Hang Guo ◽  
Fang Ye ◽  
Jian Yu

As a clean, high efficiency power generation technology, fuel cell is a promising choice of next generation power device. Widely application of fuel cells will make a contribution to save fuels and reduce atmospheric pollution. In recent years, fuel cells science, technology and engineering have attracted great interest in China. There are more and more Chinese scientists and engineers embark upon fuel cell projects. The government also encourages academic institutions and companies to enter into this area. Research and development of fuel cells are growing rapidly in China. There are many chances and challenges in fuel cells’ research and development. The state of the art of research and development of fuel cells in China was overviewed in this paper. The types of fuel cells addressed in this paper included alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, proton exchange membrane fuel cells and direct methanol fuel cells.


Sign in / Sign up

Export Citation Format

Share Document