Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

Author(s):  
Søren Juhl Andreasen ◽  
Søren Knudsen Kær

The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes and runs on pure hydrogen in a dead-end anode configuration with a purge valve. The cooling of the stack is managed by running the stack at a high stoichiometric air flow. This is possible because of the polybenzimidazole (PBI) fuel cell membranes used and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle, and end. The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures.

2019 ◽  
Vol 250 ◽  
pp. 1176-1189 ◽  
Author(s):  
Cinthia Alegre ◽  
Antonio Lozano ◽  
Ángel Pérez Manso ◽  
Laura Álvarez-Manuel ◽  
Florencio Fernández Marzo ◽  
...  

2017 ◽  
Vol 42 (34) ◽  
pp. 21901-21912 ◽  
Author(s):  
Christian Jeppesen ◽  
Pierpaolo Polverino ◽  
Søren Juhl Andreasen ◽  
Samuel Simon Araya ◽  
Simon Lennart Sahlin ◽  
...  

Author(s):  
Robert Radu ◽  
Nicola Zuliani ◽  
Rodolfo Taccani

Proton exchange membrane (PEM) fuel cells based on polybenzimidazole (PBI) polymers and phosphoric acid can be operated at temperature between 120 °C and 180 °C. Reactant humidification is not required and CO content up to 1% in the fuel can be tolerated, only marginally affecting performance. This is what makes high-temperature PEM (HTPEM) fuel cells very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. From an experimental point of view, the major research effort up to now was dedicated to the development and study of high-temperature membranes, especially to development of acid-doped PBI type membranes. Some studies were dedicated to the experimental analysis of single cells and only very few to the development and characterization of high-temperature stacks. This work aims to provide more experimental data regarding high-temperature fuel cell stacks, operated with hydrogen but also with different types of reformates. The main design features and the performance curves obtained with a three-cell air-cooled stack are presented. The stack was tested on a broad temperature range, between 120 and 180 °C, with pure hydrogen and gas mixtures containing up to 2% of CO, simulating the output of a typical methanol reformer. With pure hydrogen, at 180 °C, the considered stack is able to deliver electrical power of 31 W at 1.8 V. With a mixture containing 2% of carbon monoxide, in the same conditions, the performance drops to 24 W. The tests demonstrated that the performance loss caused by operation with reformates, can be partially compensated by a higher stack temperature.


Sensors ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1731 ◽  
Author(s):  
Chi-Yuan Lee ◽  
Fang-Bor Weng ◽  
Yzu-Wei Kuo ◽  
Chao-Hsuan Tsai ◽  
Yen-Ting Cheng ◽  
...  

2017 ◽  
Vol 359 ◽  
pp. 37-47 ◽  
Author(s):  
Christian Jeppesen ◽  
Samuel Simon Araya ◽  
Simon Lennart Sahlin ◽  
Sobi Thomas ◽  
Søren Juhl Andreasen ◽  
...  

Author(s):  
Michael Mangold ◽  
Silvia Piewek ◽  
Olaf Klein ◽  
Achim Kienle

A simple model for the start-up of a proton exchange membrane fuel cell stack is proposed. The model covers a wide temperature range from temperatures below the freezing point of water to usual operation temperatures of a low-temperature fuel cell. Model equations are derived from first principles. They account for the effects of ice and liquid water on the stack behavior. The model is validated by experimental data published by Schießwohl [2009, “Experimental Investigation of Parameters Influencing the Freeze Start Ability of a Fuel Cell System,” J. Power Sources, 193(1), pp. 107–115.], and a good qualitative agreement is found. The applicability of the model to problems of operation strategies and stack design is demonstrated by simulation studies.


Sign in / Sign up

Export Citation Format

Share Document