Aerothermal Challenges in Syngas, Hydrogen-Fired, and Oxyfuel Turbines—Part II: Effects of Internal Heat Transfer

Author(s):  
Minking K. Chyu ◽  
Sean C. Siw ◽  
Ventzislav G. Karaivanov ◽  
William S. Slaughter ◽  
Mary Anne Alvin

Future advanced turbine systems for electric power generation, based on coal-gasified fuels with CO2 capture and sequestration, are aimed for achieving higher cycle efficiency and near-zero emission. The most promising operating cycles being developed are hydrogen-fired cycle and oxyfuel cycle. Both cycles will likely have turbine working fluids significantly different from that of conventional air-based gas turbines. In addition, the oxyfuel cycle will have a turbine inlet temperature target at approximately 2030 K (1760°C), significantly higher than the current level. This suggests that aerothermal control and cooling will play a critical role in realizing our nation’s future fossil power generation systems. This paper provides a computational analysis in comparing the internal cooling performance of a double-wall or skin-cooled airfoil to that of an equivalent serpentine-cooled airfoil. The present results reveal that the double-wall or skin-cooled approach produces superior performance than the conventional serpentine designs. This is particularly effective for the oxyfuel turbine with elevated turbine inlet temperatures. The effects of coolant-side internal heat transfer coefficient on the airfoil metal temperature in both hydrogen-fired and oxyfuel turbines are evaluated. The contribution of thermal barrier coatings toward overall thermal protection for turbine airfoil cooled under these two different cooling configurations is also assessed.

Author(s):  
Sin Chien Siw ◽  
Minking K. Chyu ◽  
Ventzislav G. Karaivanov ◽  
William S. Slaughter ◽  
Mary Anne Alvin

Future advanced turbine systems for electric power generation systems, based on coal-gasified fuels with CO2 capture and sequestration, are aimed for achieving higher cycle efficiency and near-zero emission. Most promising operating cycles being developed are hydrogen-fired cycle and oxy-fuel cycle. Both cycles will likely have turbine working fluids significantly different from that of conventional air-based gas turbines. In addition, the oxy-fuel cycle will have a turbine inlet temperature target at approximately 2030K (1760°C), significantly higher than the current level. This suggests that aerothermal control and cooling will play a critical role in realizing our nation’s future fossil power generation systems. This paper provides a computational analysis in comparing the internal cooling performance of a double-wall or skin-cooled airfoil to that of an equivalent serpentine-cooled airfoil. The present results reveal that the double-wall or skin cooled approach produces superior performance than the conventional serpentine designs. This is particularly effective for the oxy-fuel turbine with elevated turbine inlet temperatures. The effects of coolant-side internal heat transfer coefficient on the airfoil metal temperature in both hydrogen-fired and oxy-fuel turbines are evaluated. The contribution of thermal barrier coatings (TBC) toward overall thermal protection for turbine airfoil cooled under these two different cooling configurations is also assessed.


Author(s):  
Akshay Khadse ◽  
Andres Curbelo ◽  
Ladislav Vesely ◽  
Jayanta S. Kapat

Abstract The first stage of turbine in a Brayton cycle faces the maximum temperature in the cycle. This maximum temperature may exceed creep temperature limit or even melting temperature of the blade material. Therefore, it becomes an absolute necessity to implement blade cooling to prevent them from structural damage. Turbine inlet temperatures for oxy-combustion supercritical CO2 (sCO2) are promised to reach blade material limit in near future foreseeing need of turbine blade cooling. Properties of sCO2 and the cycle parameters can make Reynolds number external to blade and external heat transfer coefficient to be significantly higher than those typically experience in regular gas turbines. This necessitates evaluation and rethinking of the internal cooling techniques to be adopted. The purpose of this paper is to investigate conjugate heat transfer effects within a first stage vane cascade of a sCO2 turbine. This study can help understand cooling requirements which include mass flow rate of leakage coolant sCO2 and geometry of cooling channels. Estimations can also be made if the cooling channels alone are enough for blade cooling or there is need for more cooling techniques such as film cooling, impingement cooling and trailing edge cooling. The conjugate heat transfer and aerodynamic analysis of a turbine cascade is carried out using STAR CCM+. The turbine inlet temperature of 1350K and 1775 K is considered for the study considering future potential needs. Thermo-physical properties of this mixture are given as input to the code in form of tables using REFPROP database. The blade material considered is Inconel 718.


1959 ◽  
Vol 63 (578) ◽  
pp. 73-89 ◽  
Author(s):  
P. Grootenhuis

Summary:Effusion cooling consists in forcing a gas under pressure through a porous material thereby absorbing heat from the material and forming a heat insulating layer on the exposed surface. The internal heat transfer between the porous material and coolant is considered and the heat transfer coefficient obtained from experiment. An approximate analysis for the heat insulating effect based on a heat balance method is derived in detail and applied to experiments with porous plugs set into the side of a duct carrying hot gases, and to porcras cylinders swept by hot gases. It has been found that this analysis applies reasonably accurately to the results of these experiments and of most of the published data. The manufacture of porous materials is discussed briefly and a representative list of commercially available materials is included. The application of effusion and sweat cooling to the blading and combustion chamber linings for gas turbines, rocket motors and the outside skin of flying vehicles is considered.


Author(s):  
Lesley M. Wright ◽  
Je-Chin Han

Gas turbines are used extensively for aircraft propulsion, land-based power generation, and industrial applications. The turbine inlet temperatures are far above the permissible metal temperatures. Therefore, there is a need to cool the blades for safe operation. Modern developments in turbine cooling technology play a critical role in increasing the thermal efficiency and power output of advanced gas turbine designs. Turbine blades and vanes are cooled internally and externally. This paper focuses on heat transfer augmentation of turbine blade internal cooling. Internal cooling is typically achieved by passing the cooling air through rib-enhanced serpentine passages inside the blades. Impinging jets, pin fins and dimples are also used for enhancing internal cooling heat transfer. In the past 10 years, there has been considerable progress in turbine blade internal cooling research and this paper is emphasized on reviewing selected publications to reflect recent developments in this area. In particular, this paper focuses on the newly developed design concepts as well as the combination of existing cooling techniques for turbine airfoil internal heat transfer augmentation. Rotation effects on the turbine blade leading-edge, triangular-shaped channel, mid-chord multi-pass channel and trailing-edge, wedge-shaped channel with coolant ejection are also considered.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
Paulo Eduardo Batista de Mello ◽  
Sérgio Scuotto ◽  
Fernando dos Santos Ortega ◽  
Gustavo Henrique Bolognesi Donato

1988 ◽  
Vol 33 (2) ◽  
pp. 265-269
Author(s):  
M. Shirkhanzadeh ◽  
V. Ashworth ◽  
G.E. Thompson

Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Sign in / Sign up

Export Citation Format

Share Document