On the Characterization of the Transient Stress Field Near the Tip of a Crack

1987 ◽  
Vol 54 (1) ◽  
pp. 72-78 ◽  
Author(s):  
K. Ravi-Chandar ◽  
W. G. Knauss

The dynamic stress field near a propagating crack tip is usually characterized in terms of one parameter, namely, the dynamic stress intensity factor. While analytically this is an exact representation at the crack tip itself, under transient conditions, the domain of dominance of the stress intensity factor varies as discussed by Ma and Freund (1986). In this paper, we present experimental results which show that while the stress intensity factor may dominate the near tip stress field under transient conditions as long as the crack velocity is small, it may not be dominant over an appreciable region under other transient conditions of crack tip motion, thus making it difficult to determine this quantity experimentally.

2010 ◽  
Vol 452-453 ◽  
pp. 273-276
Author(s):  
Tian Shu Song ◽  
Dong Li ◽  
Ming Yue Lv ◽  
Ming Ju Zhang

The problem of dynamic stress intensity factor is investigated theoretically in present paper for a radial crack on a circular cavity in an infinite piezoelectric medium, which is subjected to time-harmonic incident anti-plane shearing. First, a pair of electromechanically coupled Green’s functions are constructed which indicate the basic solutions for a semi-infinite piezoelectric medium with a semi-circular cavity. Second, based on the crack-division technique and conjunction technique, integral equations for the unknown stresses’ solution on the conjunction surface is established, which are related to the dynamic stress intensity factor at the crack tip. Third, the analytical expression on dynamic stress intensity factor at the crack tip is obtained. At last, some calculating cases are plotted to show how the frequencies of incident wave, the piezoelectric characteristic parameters of the material and the geometry of the crack and the circular cavity influence upon the dynamic stress intensity factors. While some of the calculating results are compared with the same situation about a straight crack and with static solutions.


1978 ◽  
Vol 45 (1) ◽  
pp. 130-134 ◽  
Author(s):  
A. F. Fossum

A dynamic stress-intensity factor and energy release rate are obtained for a running semi-infinite crack traversing a strip of elastic material subjected to out-of-plane bending. It is shown that the maximum ratio of crack tip velocity to shear wave velocity is identical to the maximum ratio of flexural wave velocity to shear wave velocity in the limit of vanishingly small wavelength. The dynamic stress-intensity factor is written as the product of a static stress-intensity factor multiplied by a function of Poisson’s ratio and crack tip velocity the function decreasing monotonically with increasing crock tip velocity. The energy release rate is shown to be independent of crack tip velocity for this type of problem.


2000 ◽  
Author(s):  
C. Rubio-Gonzalez ◽  
C.-Y. Wang ◽  
J. J. Mason

Abstract The transient elastodynamic response due to concentrated normal or shear impact loads on the faces of a semi-infinite crack in orthotropic materials is examined. Solution for the stress intensity factor history around the crack tip is found. Laplace and Fourier transforms together with the Wiener-Hopf technique are employed to solve the equations of motion in terms of displacements. An asymptotic expression for the stress near the crack tip is analyzed which leads to the dynamic stress intensity factor in modes I and II. Similar to the isotropic case, it is found that the stress intensity factor has a singularity and discontinuity when the Rayleigh wave emitted from the load arrives at the crack tip. Results are presented for a typical orthotropic material.


1983 ◽  
Vol 50 (2) ◽  
pp. 383-389 ◽  
Author(s):  
L. M. Brock

The dynamic stress intensity factor for a stationary semi-infinite crack due to the motion of a screw dislocation is obtained analytically. The dislocation position, orientation, and speed are largely arbitrary. However, a dislocation traveling toward the crack surface is assumed to arrest upon arrival. It is found that discontinuities in speed and a nonsmooth path may cause discontinuities in the intensity factor and that dislocation arrest at any point causes the intensity factor to instantaneously assume a static value. Morever, explicit dependence on speed and orientation vanish when the dislocation moves directly toward or away from the crack edge. The results are applied to antiplane shear wave diffraction at the crack edge. For an incident step-stress plane wave, a stationary dislocation near the crack tip can either accelerate or delay attainment of a critical level of stress intensity, depending on the relative orientation of the crack, the dislocation, and the plane wave. However, if the incident wave also triggers dislocation motion, then the delaying effect is diminished and the acceleration is accentuated.


Sign in / Sign up

Export Citation Format

Share Document