Void Growth in Elastic-Plastic Materials

1989 ◽  
Vol 56 (2) ◽  
pp. 309-317 ◽  
Author(s):  
C. L. Hom ◽  
R. M. McMeeking

Three-dimensional finite element computations have been done to study the growth of initially spherical voids in periodic cubic arrays. The numerical method is based on finite strain theory and the computations account for the interaction between neighboring voids. The void arrays are subjected to macroscopically uniform fields of uniaxial tension, pure shear, and high triaxial stress. The macroscopic stress-strain behavior and the change in void volume were obtained for two initial void volume fractions. The calculations show that void shape, void interaction, and loss of load carrying capacity depend strongly on the triaxiality of the stress field. The results of the finite element computation were compared with several dilatant plasticity continuum models for porous materials. None of the models agrees completely with the finite element calculations. Agreement of the finite element results with any particular constitutive model depended on the level of macroscopic strain and the triaxiality of the remote uniform stress field.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiangming Qu ◽  
Yongkang Zhang ◽  
Jun Liu

This paper is based on laser shock peening (LSP) system with a flat-topped beam, using robot simulation software to determine the oblique shock angle of different areas of a certain turbine disk mortise. Three-dimensional finite element analysis was used to study residual stress field of Ni-based alloy GH4169 under flat-topped laser oblique shocking. The effects of different laser energy and different shocking number on residual stress field of Ni-based alloy GH4169 of LSP were studied. Three-dimensional finite element analysis used super-Gaussian beam distribution to construct spatial distribution model of shock wave induced by LSP. The simulation results were in good agreement with the experimental results. The research results will provide a theoretical basis for LSP of certain turbine disk mortise.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Author(s):  
Marc Freixes ◽  
Marc Arnela ◽  
Joan Claudi Socoró ◽  
Francesc Alías Pujol ◽  
Oriol Guasch

Sign in / Sign up

Export Citation Format

Share Document