Measurements of Apparent Mass Torque Coefficients of Two-Dimensional Centrifugal Impellers

1986 ◽  
Vol 108 (4) ◽  
pp. 407-413
Author(s):  
Y. Tsujimoto ◽  
K. Imaichi ◽  
T. Moritani ◽  
K. Kim

Apparent mass torque coefficients for fluctuations of flow rate and angular velocity are determined experimentally for two-dimensional centrifugal impellers. Nearly sinusoidal fluctuations of flow rate and angular velocity are produced by using crank mechanisms, and the resulting unsteady torque on the impeller is measured. The torque is divided into components in-phase and out-of-phase with the displacements. The in-phase components are used to determine the apparent mass coefficients. Drag torque coefficients are defined and used to represent the out-of-phase components. The tests are conducted under various frequencies and amplitudes of the fluctuations with zero mean flow rate and rotational velocity. The apparent mass torque coefficients are compared with theoretical values obtained under the assumption of a two-dimensional potential flow. The experimental values are 5 to 20 percent larger than the theoretical ones and no appreciable effects of the frequency and the amplitude are observed within the range of the experiments.

1986 ◽  
Vol 108 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Y. Tsujimoto ◽  
K. Imaichi ◽  
T. Tomohiro ◽  
M. Gotoo

A new method is given for the analysis of unsteady flows through mixed flow impellers under an assumption of a two-dimensional flow in a representative flow surface of revolution. The flow is mapped to one around a two-dimensional annular cascade. If the thickness of the impeller flow passage changes in a certain functional form, the flow can be represented by using a two-dimensional potential flow in the mapping plane. For impellers with such a thickness distribution, small sinusoidal and/or large transient fluctuations of flow rate and/or rotational velocity are considered. Special attention is paid to the unsteady torque on the impeller. The unsteady torque is divided into three components—quasisteady, apparent mass and wake, and the effects of the geometry of the flow surface on each component are discussed. Apparent mass torque coefficients are determined for fluctuations of flow rate and rotational velocity. Stability of torsional vibration and surging are discussed from energy considerations.


1982 ◽  
Vol 104 (2) ◽  
pp. 228-234 ◽  
Author(s):  
K. Imaichi ◽  
Y. Tsujimoto ◽  
Y. Yoshida

Unsteady flows around radial impellers are analyzed by the use of singularity methods. Unsteady torque is given for transient and/or sinusoidal flow rate and/or angular velocity fluctuation. It is shown that the unsteady torque can be divided into three components—quasisteady, apparent mass and wake—and the nature of each component is discussed. As a result of separating the torque into these three components, it is shown that the wake component is usually smaller than the others. A gross estimate of torque fluctuation can be made easily by using the apparent mass coefficient given in the paper for logarithmic impellers covering a wide range of blade angles, blade numbers and impeller diameter ratios.


2020 ◽  
Vol 12 ◽  
pp. 175682772092171
Author(s):  
Fabian E Habicht ◽  
Fatma C Yücel ◽  
Joshua AT Gray ◽  
Christian O Paschereit

This work contains experimental investigations on the correlation of the detonation initiation process via a shock-focusing device with various initial pressures and mass flow rates. A pulse detonation combustor is operated with stoichiometric hydrogen--air--oxygen mixtures in single cycle operation. A rotationally symmetric shock-focusing geometry evokes the onset of a detonation by the focusing of the reflected leading shock wave, while a blockage plate at the rear end of the test rig is applied to induce an elevated initial pressure. The results show that the reactivity has a major influence on the success rate of detonation initiation. However, measurements with different blockage plates suggest that the mass flow rate has to be considered as well when predicting the success rate. Three main statements can be drawn from the results. (1) An increase in the mean flow velocity induces higher velocity fluctuations which result in a stronger leading shock ahead of the accelerating deflagration front. (2) An increase in the initial static pressure reduces the critical shock strength that must be exceeded to ensure successful detonation initiation by shock focusing. (3) Since the initial pressure is directly linked to the mass flow rate, these contrary trends can cancel each other out, which could be observed for 40% vol. of oxygen in the oxidizer. High-speed images were taken, which confirm that the detonation is initiated in the center of the converging--diverging nozzle due to focusing of the leading shock.


1976 ◽  
Vol 98 (1) ◽  
pp. 111-116 ◽  
Author(s):  
A. Gu ◽  
L. Cziglenyi

Analysis and method of numerical solution for evaluating the performance of hydrostatic spherical gas gyro bearings at any gimbal angle and at any eccentricity have been developed. Performance data on load capacity, gas flow rate, drag torque, and error torque over some ranges of gimbal angle and eccentricity are presented. Comparison has been made between the equatorially vented and nonvented bearings of fixed bearing angles.


1984 ◽  
Vol 141 ◽  
pp. 109-122 ◽  
Author(s):  
H. M. Atassi

It is shown that for a thin airfoil with small camber and small angle of attack moving in a periodic gust pattern, the unsteady lift caused by the gust can be constructed by linear superposition to the Sears lift of three independent components accounting separately for the effects of airfoil thickness, airfoil camber and non-zero angle of attack to the mean flow. This is true in spite of the nonlinear dependence of the unsteady flow on the mean potential flow of the airfoil. Specific lift formulas are derived and analysed to assess the importance of mean flow angle of attack and airfoil camber on the gust response.


1960 ◽  
Vol 82 (4) ◽  
pp. 921-927 ◽  
Author(s):  
Friedrich O. Ringleb

The conditions for the equilibrium of two vortexes in a two-dimensional flow through a duct or diffuser are derived. Potential-flow considerations and a few basic results from viscous-flow theory are used for the discussion of the role of cusps as separation control and trapping devices for standing vortexes. The investigations are applied to cusp diffusers especially with regard to the wind tunnel of the James Forrestal Research Center of Princeton University.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Binbin Su ◽  
Xianghe Zou ◽  
Lirong Huang

Purpose This paper aims to investigate the squeeze film lubrication properties of hexagonal patterned surface inspired by the epidermis structure of tree frog’s toe pad and numerically explore the working mechanism of hexagonal micropillar during the acquisition process of high adhesive and friction for wet contacts. Design/methodology/approach A two-dimensional elastohydrodynamic numerical model is employed for the squeezing contacts. The pressure distribution, load carrying capacity and liquid flow rate of the squeeze film are obtained through a simultaneous solution of the two-dimensional Reynolds equation and elasticity deformation equations. Findings Higher pressure is found to be longitudinally distributed across individual hexagonal pillar, with pressure peak emerging at the center of hexagonal pillar. Expanding the area density and shrinking the channel depth or initial film thickness will improve the magnitude of squeezing pressure. Relatively lower pressure is generated inside interconnected channels, which reduces the load carrying capacity of the squeeze film. Meanwhile, the introduction of microchannel is revealed to downscale the total mass flow rate of squeezing contacts. Originality/value This paper provides a good proof for the working mechanism of surface microstructures during the acquisition process of high adhesive and friction for wet contacts.


1947 ◽  
Vol 14 (3) ◽  
pp. A213-A216
Author(s):  
R. C. Binder

Abstract A method is presented for calculating the efficiency of a diffuser for two-dimensional, steady, incompressible flow without separation. The method involves a combination of organized boundary-layer data and frictionless potential-flow relations. The potential velocity and pressure are found after the boundary-layer growth is determined by a trial-and-check calculation.


Sign in / Sign up

Export Citation Format

Share Document