Experimental and Numerical Study of the Response of an Axial Compressor to Distorted Inlet Flow

1988 ◽  
Vol 110 (4) ◽  
pp. 355-360 ◽  
Author(s):  
G. Billet ◽  
J. Huard ◽  
P. Chevalier ◽  
P. Laval

A model representing the response of fixed or rotating axial compressor blade-rows is coupled to a 3-D numerical simulation of the flow outside the blade rows. The code can be used to study nonuniform compressible 3-D flows through turbomachines. The fluid is assumed to be inviscid in the space outside the rows, while the viscous effects are taken into account inside. Numerical results are compared with experimental data obtained on a test stand with steady distorted inflow. This comparison shows that this numerical approach is capable of predicting the response of the compressor. This work is part of a larger project aimed at predicting the response of a compressor to a nonuniform inlet flow that is periodic in time, or fully unsteady.

Author(s):  
Nikolaos Karagiannis ◽  
Theofanis Karambas ◽  
Christopher Koutitas

In the present work, an innovative numerical approach was developed coupling two models in order to simulate the wave propagation over a sloping beach and the sediment transport in surf and swash zones. The first model, synthesized on the basis of OpenFOAM (version 2.4.0) is used to describe the hydrodynamic characteristics of the flow and the wave propagation while the second one is applied for the sediment transport and erosion/deposition prediction using the results of the first model. The method above constitutes an iterative procedure which is tested hereby and seems to yield satisfactory numerical results in comparison with experimental data (Dette 1998).


2016 ◽  
Vol 26 (3/4) ◽  
pp. 722-744 ◽  
Author(s):  
Marcela A. Cruchaga ◽  
Carlos Ferrada ◽  
Nicolás Márquez ◽  
Sebastián Osses ◽  
Mario Storti ◽  
...  

Purpose – The present work is an experimental and numerical study of a sloshing problem including baffle effects. The purpose of this paper is to assess the numerical behavior of a Lagrangian technique to track free surface flows by comparison with experiments, to report experimental data for sloshing at different conditions and to evaluate the effectiveness of baffles in limiting the wave height and the wave propagation. Design/methodology/approach – Finite element simulations performed with a fixed mesh technique able to describe the free surface evolution are contrasted with experimental data. The experiments consist of an acrylic tank of rectangular section designed to attach baffles of different sizes at different distance from the bottom. The tank is filled with water and mounted on a shake table able to move under controlled horizontal motion. The free surface evolution is measured with ultrasonic sensors. The numerical results computed for different sloshing conditions are compared with the experimental data. Findings – The reported numerical results are in general in good agreement with the experiments. In particular, wave heights and frequencies response satisfactorily compared with the experimental data for the several cases analyzed during steady state forced sloshing and free sloshing. The effectiveness of the baffles increases near resonance conditions. From the set of experiments studied, the major reduction of the wave height was obtained when larger baffles were positioned closer to the water level at rest. Practical implications – Model validation: evaluation of the effectiveness of non-massive immersed baffles during sloshing. Originality/value – The value of the present work encompass the numerical and experimental study of the effect of immersed baffles during sloshing under different imposed conditions and the comparison of numerical results with the experimental data. Also, the results shown in the present work are a contribution to the understanding of the role in the analysis of the proposed problem of some specific aspects of the geometry and the imposed motion.


1999 ◽  
Vol 121 (1) ◽  
pp. 44-58 ◽  
Author(s):  
T. Arima ◽  
T. Sonoda ◽  
M. Shirotori ◽  
A. Tamura ◽  
K. Kikuchi

We have developed a computer simulation code for three-dimensional viscous flow in turbomachinery based on the time-averaged compressible Navier–Stokes equations and a low-Reynolds-number k–ε turbulence model. It is described in detail in this paper. The code is used to compute the flow fields for two types of rotor (a transonic fan NASA Rotor 67 and a transonic axial compressor NASA rotor 37), and numerical results are compared to experimental data based on aerodynamic probe and laser anemometer measurements. In the case of Rotor 67, calculated and experimental results are compared under the design speed to validate the code. The calculated results show good agreement with the experimental data, such as the rotor performance map and the spanwise distribution of total pressure, total temperature, and flow angle downstream of the rotor. In the case of Rotor 37, detailed comparisons between the numerical results and the experimental data are made under the design speed condition to assess the overall quality of the numerical solution. Furthermore, comparisons under the part-speed condition are used to investigate a flow field without passage shock. The results are well predicted qualitatively. However, considerable quantitative discrepancies remain in predicting the flow near the tip. In order to assess the predictive capabilities of the developed code, computed flow structures are presented with the experimental data for each rotor and the cause of the discrepancies is discussed.


Author(s):  
Nguyen Tuan Trung ◽  
Pham Thanh Tung

The paper presents a numerical study on the effects of opening size and location on punching shear resistance of flat slabs without drop panels and shear reinforcement using ABAQUS. The study proposes an ABAQUS model that is enable to predict the punching shear resistance of flat slabs with openings. The model is validated well with the experimental data in literature. Using the validated numerical model, the effects of opening size and location on the punching shear resistance of flat slabs are then investigated, and the numerical results are compared with those predicted by ACI 318-19 and TCVN 5574:2018. The comparison between experimental and numerical results shows that the ABAQUS model is reliable. The punching shear resistances calculated by ACI 318-19 and TCVN 5574:2018 with different opening sizes and locations are agreed well to each other, since the design principles between two codes now are similar.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1064 ◽  
Author(s):  
Christoph Mankel ◽  
Antonio Caggiano ◽  
Andreas König ◽  
Diego Said Schicchi ◽  
Mona Nazari Sam ◽  
...  

This paper reports a numerical approach for modelling the thermal behavior and heat accumulation/liberation of sustainable cementitious composites made with Recycled Brick Aggregates (RBAs) employed as carriers for Phase-Change Materials (PCMs). In the framework of the further development of the fixed grid modelling method, classically employed for solving the well-known Stefan problem, an enthalpy-based approach and an apparent calorific capacity method have been proposed and validated. More specifically, the results of an experimental program, following an advanced incorporation and immobilization technique, developed at the Institut für Werkstoffe im Bauwesen for investigating the thermal responses of various combinations of PCM-RBAs, have been considered as the benchmark to calibrate/validate the numerical results. Promising numerical results have been obtained, and temperature simulations showed good agreement with the experimental data of the analyzed mixtures.


1959 ◽  
Vol 81 (3) ◽  
pp. 379-386
Author(s):  
G. L. Mellor

The theoretical potential flow results of Part I are compared with the large number of NACA 65-series compressor blade data. It is found that a single empirical constant used to modify the theory permits reasonable predictions of turning or lift coefficient to be made for any cascade geometry in the unstalled regions of flow. Furthermore, it is demonstrated that the theory allows a considerable number of plus and minus stalling angle of attack data to be collapsed to a single empirical curve. Conversely such a curve, once established, allows stalling predictions to be made for any cascade geometry. One interesting point on this curve is the loading limit above which the cascade is always stalled.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Beibei Feng ◽  
Shiming Wang ◽  
Shengqiang Li ◽  
Xingtuan Yang ◽  
Shengyao Jiang

Numerical simulation is performed to investigate the pressure distribution of helium gas under high pressure and high temperature for 10 MW High Temperature Gas-Cooled Reactor (HTGR-10). Experimental studies are first conducted on a self-built test system to investigate the static pressure distribution of a 90° elbow and validate the credibility of the computational approach. The 90° elbow is designed and manufactured geometrically the same as HTGR-10. Based on the experimental data, comparison of static pressure of inner wall and outer wall of 90° elbow with numerical results is carried out to verify the numerical approach. With high agreement between experimental results and numerical results of water flowing through 90° elbow, flow characteristics of helium gas under high pressure and high temperature are investigated on the confirmed numerical approach for flow measurement. And wall pressure distribution of eight cross sections of 90° elbow is given in detail to represent the entire region of the elbow.


Author(s):  
Junting Xiang ◽  
Jörg Uwe Schlüter ◽  
Fei Duan

In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its miniaturization. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.


2013 ◽  
Vol 448-453 ◽  
pp. 3847-3850
Author(s):  
Da Li ◽  
Fang Qin Cheng ◽  
Jian Feng Li ◽  
Yun Shan Guan

Despite the widespread use of hydrocyclone in the process of potash ore desliming, its accurate design is often difficult because the feed composition is complicated and the viscosity is high in the brine system. In this study, a numerical approach based on computational fluid dynamics (CFD) was performed to describe the flow field. The numerical simulation of flow pattern in hydrocyclones for potash ore desliming was presented. Some basic information concerning the velocity and pressure distribution is given, and the results can be used as the fundamental basis for its design.


Sign in / Sign up

Export Citation Format

Share Document