Temperature Dependences of the Elastic Constants of Precipitation-Hardened Aluminum Alloys 2014 and 2219

1977 ◽  
Vol 99 (2) ◽  
pp. 181-184 ◽  
Author(s):  
D. T. Read ◽  
H. M. Ledbetter

Elastic properties of precipitation-hardened aluminum alloys 2014 and 2219 were studied between 4 and 300 K using ultrasonic pulse techniques. Both the longitudinal and transverse sound velocities were measured. Also reported are the Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio. For both alloys, the Young’s moduli are about ten percent higher than for unalloyed aluminum, and they increase about ten percent on cooling from 300 to 4 K. All the elastic constants show normal temperature dependence.

2013 ◽  
Vol 664 ◽  
pp. 672-676
Author(s):  
De Ming Han ◽  
Gang Zhang ◽  
Li Hui Zhao

We present first-principles investigations on the elastic properties of XBi (X=Ho, Er) compounds. Basic physical properties, such as lattice constant, elastic constants (Cij), isotropic shear modulus (G), bulk modulus (B), Young’s modulus (Y), Poisson’s ratio (υ), and Anisotropy factor (A) are calculated. The calculated energy band structures show that the two compounds possess semi-metallic character. We hope that these results would be useful for future work on two compounds.


2014 ◽  
Vol 975 ◽  
pp. 163-167 ◽  
Author(s):  
N.K. Gaur ◽  
Rasna Thakur ◽  
Rajesh K. Thakur ◽  
A.K. Nigam

We have investigated the elastic and thermal properties of Sr1-xCdxCoO3 (0=x=0.1) probably for the first time by means of modified rigid ion model (MRIM). In this paper, we present the second order elastic constants (SOECs) and other elastic properties like Bulk modulus (B), Young's modulus (Y), Shear modulus (G), ̠̹̿̓̓̿̾˷̓˰̱̹͂̈́̿˰˸σ˹˼˰̵̜̱̽˷̓˰̵̵̱̱̀͂̽̈́͂˰˸m, l), transverse, longitudinal, ˰̵̷̵̱̱͆͂˰̵͇̱͆˰̵̼̳̹͉͆̿̈́˰˰˸υt, υl˼˰υm) and Anisotropy parameter (A). Here, the SOECs for Sr1-xCdxCoO3 compounds are positive and satisfy the generalized criteria for mechanically stable crystals: (C11-C12) > 0, (C11+2C12) > 0 and C44 > 0 which confirm that Sr1-xCdxCoO3 (0=x=0.1) belong to metallically bonding materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
O. N. Senkov ◽  
D. B. Miracle

AbstractTwo classical criteria, by Pugh and Pettifor, have been widely used by metallurgists to predict whether a material will be brittle or ductile. A phenomenological correlation by Pugh between metal brittleness and its shear modulus to bulk modulus ratio was established more than 60 years ago. Nearly four decades later Pettifor conducted a quantum mechanical analysis of bond hybridization in a series of intermetallics and derived a separate ductility criterion based on the difference between two single-crystal elastic constants, C12–C44. In this paper, we discover the link between these two criteria and show that they are identical for materials with cubic crystal structures.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2010
Author(s):  
Shuo Wang ◽  
Yuhong Zhao ◽  
Huijun Guo ◽  
Feifei Lan ◽  
Hua Hou

In this paper, the mechanical properties and minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 are calculated from first principles. The results show that the considered Zn-Zr intermetallic compounds are effective strengthening phases compared to MgZn2 based on the calculated elastic constants and polycrystalline bulk modulus B, shear modulus G, and Young’s modulus E. Meanwhile, the strong Zn-Zr ionic bondings in ZnZr, Zn2Zr, and Zn2Zr3 alloys lead to the characteristics of a higher modulus but lower ductility than the MgZn2 alloy. The minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 is 0.48, 0.67, 0.68, and 0.49 W m−1 K−1, respectively, indicating that the thermal conductivity of the Mg-Zn-Zr alloy could be improved as the precipitation of Zn atoms from the α-Mg matrix to form the considered Zn-Zr binary alloys. Based on the analysis of the directional dependence of the minimum thermal conductivity, the minimum thermal conductivity in the direction of [110] can be identified as a crucial short limit for the considered Zn-Zr intermetallic compounds in Mg-Zn-Zr alloys.


1990 ◽  
Vol 193 ◽  
Author(s):  
Jin Wu ◽  
Yening Wang ◽  
Yifeng Yan ◽  
Zhongxian Zhao

ABSTRACTThe temperature dependence of the in-plane C11 C22. C12 and C66 modes between 80 and 260 K of superconducting crystals of Bi2Sr2Ca1Cu208 have been obtained via the measurements of ultrasonic-velocities. The anisotropic elasticity in the a-b plane of single crystal Bi2 Sr2Ca1Cu2O8 is manifest. The shear modulus of sound propagation along the [110] with the polarization has been also calculated and shows an overall trend of softening over a wide temperature range above Tc. The shear modulus C6 6 shows three obvious softening minima around 240–250 K, 150 K and 100 K.


1975 ◽  
Vol 53 (6) ◽  
pp. 581-582 ◽  
Author(s):  
T. J. Langill ◽  
J. Trivisonno

A modified ultrasonic pulse overlap technique was employed to measure the single crystal elastic constants of high purity gallium from 4.2 K to 190 K. The results are compared with data obtained by a technique which employed direct electromagnetic generation of acoustic waves as well as with earlier pulse echo measurements.


2008 ◽  
Vol 22 (22) ◽  
pp. 2063-2076 ◽  
Author(s):  
A. BOUHEMADOU

Using ab initio calculations, we have studied the structural and elastic properties of M 2 InC , with M = Sc , Ti , V , Zr , Nb , Hf and Ta . Geometrical optimization of the unit cell is in agreement with the available experimental data. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M 2 InC aggregates. We estimated the Debye temperature of M 2 InC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Sc 2 InC , Ti 2 InC , V 2 InC , Zr 2 InC , Nb 2 InC , Hf 2 InC and Ta 2 InC compounds, and it still awaits experimental confirmation.


2011 ◽  
Vol 465 ◽  
pp. 9-14 ◽  
Author(s):  
Haruyuki Inui ◽  
Takashi Oohashi ◽  
Norihiko L. Okamoto ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka

The physical and mechanical properties of Co3(Al,W) with the L12 structure have been investigated both in single and polycrystalline forms. The values of all the three independent single-crystal elastic constants and polycrystalline elastic constants of Co3(Al,W) experimentally determined by resonance ultrasound spectroscopy at liquid helium temperature are 15~25% larger than those of Ni3(Al,Ta) but are considerably smaller than those previously calculated. When judged from the values of Poisson’s ratio, Cauchy pressure and Gh (shear modulus)/Bh (bulk modulus), the ductility of Co3(Al,W) is expected to be sufficiently high. Indeed, the value of tensile elongation obtained in air is as large as 28 %, which is far larger than that obtained in Ni3Al polycrystals under similar conditions.


Sign in / Sign up

Export Citation Format

Share Document