scholarly journals Discussion: “Parallel Porous Plate Channel Flow Characteristics Resulting from Nonuniform Entry Velocity Profiles” (Doughty, J. R., 1975, ASME J. Fluids Eng., 97, pp. 78–81)

1976 ◽  
Vol 98 (1) ◽  
pp. 125-125
Author(s):  
G. D. Raithby
1975 ◽  
Vol 97 (1) ◽  
pp. 78-81 ◽  
Author(s):  
J. R. Doughty

The author has found a class of entry velocity profiles that develop into the Raithby fully developed second solution for flow in a parallel porous plate channel with strong suction. The entry profiles of interest are characterized by a velocity defect at the channel centerline. Two numerical solution techniques are employed. The faster first technique involving solution of the boundary layer equations is used to predict overall trends of profile development. The boundary layer solutions are compared to exact solutions of the Navier-Stokes equations. A detailed examination was made of the double Poiseuille entry condition which was found to develop into Raithby’s profile.


2021 ◽  
Author(s):  
Xuecheng Fu ◽  
Feifei Wang ◽  
Mengyang Liu ◽  
Wenxin Huai

Abstract Floating vegetation islands (FVIs) have been widely utilized in various river ecological restoration projects due to their ability to purify pollutants. FVIs float at the surface of shallow pools with their roots unanchored in the sediment. Biofilm formed by roots under islands filters nutrients and particles in the water flowing through it. Flow field disturbance will occur and transverse distribution of flow velocity will change due to the existence of FVIs. Transport efficiency of suspended solids, nutrients, and pollutants will also be altered. A modified analytical model that considers effects of boundary friction, drag force of vegetation, transverse shear turbulence, and secondary flow is established to predict transverse variation of depth-averaged streamwise velocity for the open-channel flow with FVIs using Shiono and Knight method. The simulation results with suitable boundary conditions successfully predicted lateral profile of the depth-averaged streamwise velocity compared with the experimental results of symmetrical and unsymmetrical arrangements of FVIs. Hence, the presented model can provide guidance for investigating flow characteristics of rivers with FVIs.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 413-422 ◽  
Author(s):  
Hitesh Kumar

An analytical study is performed to explore the flow and heat transfer characteristics of nanofluid (Al2O3-water and TiO3-water) over a linearly stretching porous sheet in the presence of radiation, ohmic heating, and viscous dissipation. Homotopy perturbed method is used and complete solution is presented, the results for the nanofluids velocity and temperature are obtained. The effects of various thermophysical parameters on the boundary-layer flow characteristics are displayed graphically and discussed quantitatively. The effect of viscous dissipation on the thermal boundary-layer is seen to be reverse after a fixed distance from the wall, which is very strange in nature and is the result of a reverse flow. The finding of this paper is unique and may be useful for future research on nanofluid.


Author(s):  
Dongmei Zhou ◽  
Kenneth S. Ball

This paper has two objectives, (1) to examine the effects of spatial resolution, (2) to examine the effects of computational box size, upon turbulence statistics and the amount of drag reduction with and without the control scheme of wall oscillation. Direct numerical simulation (DNS) of the fully developed turbulent channel flow was performed at Reynolds number of 200 based on the wall-shear velocity and the channel half-width by using spectral methods. For the first objective, four different grids were applied to the same computational domain and the biggest impact was observed on the logarithmic law of mean velocity profiles and on the amount of drag reduction with 28.3% for the coarsest mesh and 35.4% for the finest mesh. Other turbulence features such as RMS velocity fluctuations, RMS vorticity fluctuations, and bursting events were either overpredicted or underpredicted through coarse grids. For the second objective, two different minimal channels and one natural full channel were studied and 3% drag reduction difference was observed between the smallest minimal channel of 39.1% and the natural full channel of 36.2%. In the near-wall region, however, the minimal channel flow did not exhibit significant difference in the mean velocity profiles and other lower-order statistics. Finally, from this systematical study, it showed that the accuracy of DNS depends more on the spanwise resolution, and it also confirmed that a minimal channel model is able to catch key structures of turbulence in the near-wall region but is much less expensive.


Sign in / Sign up

Export Citation Format

Share Document