Plastic Collapse of Thin Internally Pressurized Torispherical Shells

1979 ◽  
Vol 101 (4) ◽  
pp. 311-320 ◽  
Author(s):  
S. K. Radhamohan ◽  
G. D. Galletly

The plastic collapse pressures of internally pressurized thin torispherical shells are given in the present paper. The influence of both the geometric parameters (i.e., r/D, RS/D and D/t) and the material properties (yield stress σyp and the strain-hardening coefficient) on the plastic collapse pressures were investigated. Both steel and aluminium shells were analyzed and, based on the present parametric study, approximate design equations for calculating the plastic collapse pressures are suggested. The asymmetric buckling pressures, pcr, for torispherical shells (obtained from a companion paper) are also compared with the plastic collapse pressures, pc, to determine which are the lower and, thus, control the mode of failure. In addition, the approximate design equations for pcr and pc are compared with some experimental results on small machined models; the agreement between theory and test was quite good.

1979 ◽  
Vol 101 (3) ◽  
pp. 216-225 ◽  
Author(s):  
G. D. Galletly ◽  
S. K. Radhamohan

The elastic-plastic buckling of internally pressurized torispherical shells is considered in some detail in the paper. The effects of geometric parameters (r/D, RS/D and D/t) and material properties (σyp, E and the strain-hardening coefficient) on the elastic-plastic internal buckling pressures were investigated using the BOSOR 5 program. Based on the results of the parametric study, approximate formulas for predicting the elastic-plastic internal buckling pressures are suggested. These should be useful to designers.


2002 ◽  
Vol 124 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Akihiko Hirano ◽  
Masao Sakane ◽  
Naomi Hamada

This paper describes the relationship between Rockwell C hardness and elastic-plastic material constants by using finite element analyses. Finite element Rockwell C hardness analyses were carried out to study the effects of friction coefficient and elastic-plastic material constants on the hardness. The friction coefficient and Young’s modulus had no influence on the hardness but the inelastic materials constants, yield stress, and strain hardening coefficient and exponent, had a significant influence on the hardness. A new equation for predicting the hardness was proposed as a function of yield stress and strain hardening coefficient and exponent. The equation evaluated the hardness within a ±5% difference for all the finite element and experimental results. The critical thickness of specimen and critical distance from specimen edge in the hardness testing was also discussed in connection with JIS and ISO standards.


2005 ◽  
Vol 20 (4) ◽  
pp. 987-1001 ◽  
Author(s):  
Lugen Wang ◽  
M. Ganor ◽  
S.I. Rokhlin

This paper, based on extensive finite element simulations and scaling analysis, presents scaling functions for the inverse problem in nanoindentation with sharp indenters to determine material properties from nanoindentation response. All the inverse scaling functions were directly compared with results calculated using the large deformation finite element method and are valid from the elastic to the full plastic regimes. To relate the material properties to measurable indentation parameters a new nondimensional experimental parameter Λ=P/(DS) was introduced, where P is load, D is indentation depth, and S is contact stiffness. This parameter is monotonically related to the ratio of yield stress to modulus. The modulus, hardness and yield stress are presented as explicit functions of Λ and the strain hardening exponent. The error in the inverse modulus, hardness, and yield stress due to uncertainty of the strain hardening exponent was studied and is compared with that of the traditional Oliver–Pharr method. The method of determining the strain hardening exponent from measurement with an additional indenter with a different cone apex angle is described. For this, a scaling function with the strain hardening exponent as the only unknown was obtained. In this way, the modulus, hardness, yield stress and strain hardening exponent may be determined. Experimental results show the inversion method permits the modulus and hardness to be accurately determined irrespective of the effects of pileup or sink-in.


1979 ◽  
Vol 101 (1) ◽  
pp. 64-72 ◽  
Author(s):  
G. D. Galletly ◽  
R. W. Aylward

In the first part of the paper, plastic collapse pressures of thin 2:1 ellipsoidal shells are determined. The effects of E, σyp and strain hardening, S, on the collapse pressure are presented and discussed. The second part of the paper is concerned with the controlling failure pressures of internally pressurized 2:1 ellipsoidal shells. This involves the consideration of both plastic collapse pressures and asymmetric buckling pressures (the latter were obtained from a companion paper). Curves of the controlling failure pressures versus D/t are given for several values of σyp and S. Both aluminum and steel shells are considered. Dimensionless buckling and collapse pressures are also tabulated and some very simple formulas for both failure modes are suggested which should be useful to designers.


2020 ◽  
Vol 835 ◽  
pp. 229-242
Author(s):  
Oboso P. Bernard ◽  
Nagih M. Shaalan ◽  
Mohab Hossam ◽  
Mohsen A. Hassan

Accurate determination of piezoelectric properties such as piezoelectric charge coefficients (d33) is an essential step in the design process of sensors and actuators using piezoelectric effect. In this study, a cost-effective and accurate method based on dynamic loading technique was proposed to determine the piezoelectric charge coefficient d33. Finite element analysis (FEA) model was developed in order to estimate d33 and validate the obtained values with experimental results. The experiment was conducted on a piezoelectric disc with a known d33 value. The effect of measuring boundary conditions, substrate material properties and specimen geometry on measured d33 value were conducted. The experimental results reveal that the determined d33 coefficient by this technique is accurate as it falls within the manufactures tolerance specifications of PZT-5A piezoelectric film d33. Further, obtained simulation results on fibre reinforced and particle reinforced piezoelectric composite were found to be similar to those that have been obtained using more advanced techniques. FE-results showed that the measured d33 coefficients depend on measuring boundary condition, piezoelectric film thickness, and substrate material properties. This method was proved to be suitable for determination of d33 coefficient effectively for piezoelectric samples of any arbitrary geometry without compromising on the accuracy of measured d33.


2004 ◽  
Vol 126 (2) ◽  
pp. 372-379 ◽  
Author(s):  
J. L. Bucaille ◽  
E. Felder ◽  
G. Hochstetter

An experimental and numerical study of the scratch test on polymers near their surface is presented. The elastoplastic response of three polymers is compared during scratch tests at large deformations: polycarbonate, a thermosetting polymer and a sol-gel hard coating composed of a hybrid matrix (thermosetting polymer-mineral) reinforced with oxide nanoparticles. The experiments were performed using a nanoindenter with a conical diamond tip having an included angle of 30 deg and a spherical radius of 600 nm. The observations obtained revealed that thermosetting polymers have a larger elastic recovery and a higher hardness than polycarbonate. The origin of this difference in scratch resistance was investigated with numerical modelling of the scratch test in three dimensions. Starting from results obtained by Bucaille (J. Mat. Sci., 37, pp. 3999–4011, 2002) using an inverse analysis of the indentation test, the mechanical behavior of polymers is modeled with Young’s modulus for the elastic part and with the G’sell-Jonas’ law with an exponential strain hardening for the viscoplastic part. The strain hardening coefficient is the main characteristic parameter differentiating the three studied polymers. Its value is equal to 0.5, 4.5, and 35, for polycarbonate, the thermosetting polymer and the reinforced thermosetting polymer, respectively. Firstly, simulations reveals that plastic strains are higher in scratch tests than in indentation tests, and that the magnitude of the plastic strains decreases as the strain hardening increases. For scratching on polycarbonate and for a penetration depth of 0.5 μm of the indenter mentioned above, the representative strain is equal to 124%. Secondly, in agreement with experimental results, numerical modeling shows that an increase in the strain hardening coefficient reduces the penetration depth of the indenter into the material and decreases the depth of the residual groove, which means an improvement in the scratch resistance.


1998 ◽  
Vol 38 (9) ◽  
pp. 1469-1474 ◽  
Author(s):  
S. Nagarjuna ◽  
M. Srinivas ◽  
K. Balasubramanian ◽  
D.S. Sarma

2011 ◽  
Vol 56 (4) ◽  
pp. 1021-1027
Author(s):  
K. Pieła

Anomaly of the Work Hardening of Zn-Cu Single Crystals Oriented for Slip in Secondary SystemsThe copper alloyed (up to 1.5%) zinc single crystals oriented for slip in non-basal systems (orientation close to < 1120 >) were subjected to compression test within a range of temperatures of 77-293K. It has been stated, that Zn-Cu crystals exhibit characteristic anomalies of the thermal dependence of yield stress and of the strain hardening exponent. Both of them are related to the change in type and sequence of active non-basal slip systems: pyramidal of the 1storder {1011} < 1123 > (Py-1) and pyramidal of the 2ndorder {1122} < 1123 > (Py-2). The temperature anomaly of the yield stress results from the change of the slip from Py-2 systems to simultaneous slip in the Py-2 and Py-1 (Py-2 + Py-1) systems, occurring in the preyielding stage. On the other hand, sequential activation of pyramidal systems taking place in advanced plastic stage (i.e. the first Py-2 and next Py-2 + Py-1 systems) is responsible for temperature anomaly of strain hardening exponent. Increase in copper addition favors the activity of Py-2 systems at the expense of Py-1 slip, what leads to a drastic differences in plastic behavior of zinc single crystals.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Jianhua Liu ◽  
Hao Gong ◽  
Xiaoyu Ding

Recently, the wedge self-locking nut, a special anti-loosening product, is receiving more attention because of its excellent reliability in preventing loosening failure under vibration conditions. The key characteristic of a wedge self-locking nut is the special wedge ramp at the root of the thread. In this work, the effect of ramp angle on the anti-loosening ability of wedge self-locking nuts was studied systematically based on numerical simulations and experiments. Wedge self-locking nuts with nine ramp angles (10 deg, 15 deg, 20 deg, 25 deg, 30 deg, 35 deg, 40 deg, 45 deg, and 50 deg) were modeled using a finite element (FE) method, and manufactured using commercial production technology. Their anti-loosening abilities under transversal vibration conditions were analyzed based on numerical and experimental results. It was found that there is a threshold value of the initial preload below which the wedge self-locking nuts would lose their anti-loosening ability. This threshold value of initial preload was then proposed for use as a criterion to evaluate the anti-loosening ability of wedge self-locking nuts quantitatively and to determine the optimal ramp angle. Based on this criterion, it was demonstrated, numerically and experimentally, that a 30 deg wedge ramp resulted in the best anti-loosening ability among nine ramp angles studied. The significance of this study is that it provides an effective method to evaluate the anti-loosening ability of wedge self-locking nuts quantitatively, and determined the optimal ramp angle in terms of anti-loosening ability. The proposed method can also be used to optimize other parameters, such as the material properties and other dimensions, to guarantee the best anti-loosening ability of wedge self-locking nuts.


Sign in / Sign up

Export Citation Format

Share Document