scholarly journals Boiling Heat Transfer With Cryogenic Fluids at Standard, Fractional, and Near-Zero Gravity

1964 ◽  
Vol 86 (3) ◽  
pp. 351-358 ◽  
Author(s):  
H. Merte ◽  
J. A. Clark

A study is reported of boiling heat transfer with saturated liquid nitrogen under atmospheric pressure at standard, fractional, and near-zero gravity. A drop-tower technique is used to achieve the reduced gravities. Because of the short test time available a transient technique using a sphere as a transient calorimeter is employed to obtain the heat-transfer data. This technique permits the ready acquisition of data in all boiling regimes from the film boiling region through nucleate boiling. Comparison is made with correlations for film boiling and for maximum and minimum heat flux and their corresponding Δtsat.

2001 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
P. M. Carrica ◽  
V. Masson

We present the results of an experimental study of the effects of externally imposed electric fields on boiling heat transfer and critical heat flux (CHF) in dielectric fluids. The study comprises the analysis of geometries that, under the effects of electric fields, cause the bubbles either to be pushed toward the heater or away from it. A local phase detection probe was used to measure the void fraction and the interfacial impact rate near the heater. It was found that the critical heat flux can be either augmented or reduced with the application of an electric field, depending on the direction of . In addition, the heat transfer can be slightly enhanced or degraded depending on the heat flux. The study of the two-phase flow in nucleate boiling, only for the case of favorable dielectrophoretic forces, reveals that the application of an electric field reduces the bubble detection time and increases the detachment frequency. It also shows that the two-phase flow characteristics of the second film boiling regime resemble more a nucleate boiling regime than a film boiling regime.


1959 ◽  
Vol 81 (3) ◽  
pp. 230-236 ◽  
Author(s):  
R. Siegel ◽  
C. Usiskin

A photographic study was made to determine the qualitative effect of zero gravity on the mechanism of boiling heat transfer. The experimental equipment included a container for boiling water and a high-speed motion-picture camera. To eliminate the influence of gravity, these were mounted on a platform which was allowed to fall freely approximately 8 ft. During the free fall, photographs were taken of boiling from various surface configurations such as electrically heated horizontal and vertical ribbons. The heat flux was varied to produce conditions from moderate nucleate boiling to burnout. The results indicate that gravity plays a considerable role in the boiling process, especially in connection with the motion of vapor within the liquid.


1986 ◽  
Vol 108 (1) ◽  
pp. 117-124 ◽  
Author(s):  
S. Fukusako ◽  
T. Komoriya ◽  
N. Seki

Experimental investigations of transition and film boiling in a liquid-saturated porous bed are reported. The porous bed contained in a vertical circular cylinder is made up of packed spherical beads whose diameters range from 1.0 to 16.5 mm, while the depth of the bed overlying the heating surface varies from 10 to 300 mm. Water and fluorocarbon refrigerants R-11 and R-113 are adopted as testing liquids. Special attention is focused on the effect of the diameter of spherical beads on boiling heat transfer in the transition boiling region. It is found that for the small bead diameters the steady boiling heat transfer rises monotonically with temperature from nucleate boiling through the film boiling region, without going through a local maximum.


1972 ◽  
Vol 38 (308) ◽  
pp. 858-864 ◽  
Author(s):  
Kaneyasu NISHIKAWA ◽  
Takahiro ITO ◽  
Kenichi MATSUMOTO ◽  
Torato KUROKI

2002 ◽  
Vol 1 (1) ◽  
Author(s):  
P. M. Carrica ◽  
V. Masson

We present the results of an experimental study of the effects of externally imposed electric fields on boiling heat transfer and critical heat flux (CHF) in dielectric fluids. The study comprises the analysis of geometries that, under the effects of electric fields, cause the bubbles either to be pushed toward the heater or away from it. A local phase detection probe was used to measure the void fraction and the interfacial impact rate near the heater. It was found that the critical heat flux can be either augmented or reduced with the application of an electric field, depending on the direction of . In addition, the heat transfer can be slightly enhanced or degraded depending on the heat flux. The study of the two-phase flow in nucleate boiling, only for the case of favorable dielectrophoretic forces, reveals that the application of an electric field reduces the bubble detection time and increases the detachment frequency. It also shows that the two-phase flow characteristics of the second film boiling regime resemble more a nucleate boiling regime than a film boiling regime.


Sign in / Sign up

Export Citation Format

Share Document