Three-Dimensional Simulations in Glenn Patients: Clinically Based Boundary Conditions, Hemodynamic Results and Sensitivity to Input Data

2011 ◽  
Vol 133 (11) ◽  
Author(s):  
G. Troianowski ◽  
C. A. Taylor ◽  
J. A. Feinstein ◽  
I. E. Vignon-Clementel

While many congenital heart defects can be treated without significant long term sequelae, some achieve successful palliation as their definitive endpoints. The single-ventricle defect is one such defect and leaves the child with only one operational ventricle, requiring the systemic and the pulmonary circulations to be placed in series through several operations performed during early childhood. Numerical simulations may be used to investigate these hemodynamic conditions and their relation to post-operative sequelae; however, they rely heavily on boundary condition prescription. In this study, we investigate the impact of hemodynamic input data uncertainties on simulation results. Imaged-based patient-specific models of the multi-branched pulmonary arteries and superior vena cava were built for five cavopulmonary connection (i.e. Glenn) patients. Magnetic resonance imaging and catheterization data were acquired for each patient prior to their Fontan surgery. Inflow and outflow boundary conditions were constructed to match available clinical data and resulted in the development of a framework to incorporate these types of clinical data into patient-specific simulations. Three-dimensional computational fluid dynamics simulations were run and hemodynamic indicators were computed. Power loss was low (and efficiency very high) and a linear correlation was found between power loss and cardiac index among the five patients. Other indicators such as low wall shear stress were considered to better characterize these patients. Flow was complex and oscillatory near the anastomosis, and laminar in the smaller branches. While common trends were seen among patients, results showed differences among patients, especially in the 3D maps, strengthening the importance of patient-specific simulations. A sensitivity analysis was performed to investigate the impact of input data (clinical and modeling) to construct boundary conditions on several indicators. Overall, the sensitivity of the output indicators to the input data was small but non-negligible. The sensitivity of commonly used hemodynamic indicators to compare patients is discussed in this context. Power efficiency was much more sensitive to pressure variation than power loss. To increase the precision of such indicators, mean flow split between right and left lungs needs to be measured with more accuracy with higher priority than refining the model of how the flow is distributed on average among the smaller branches. Although ±10% flow split imprecision seemed reasonable in terms of patient comparison, this study suggests that the common practice of imposing a right pulmonary artery/left pulmonary artery flow split of 55%/45% when performing patient specific simulations should be avoided. This study constitutes a first step towards understanding the hemodynamic differences between pre- and post Fontan surgery, predicting these differences, and evaluating surgical outcomes based on preoperative data.

Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 60 ◽  
Author(s):  
Ernest Lo ◽  
Leon Menezes ◽  
Ryo Torii

Background: Calculation of fractional flow reserve (FFR) using computed tomography (CT)-based 3D anatomical models and computational fluid dynamics (CFD) has become a common method to non-invasively assess the functional severity of atherosclerotic narrowing in coronary arteries. We examined the impact of various inflow boundary conditions on computation of FFR to shed light on the requirements for inflow boundary conditions to ensure model representation. Methods: Three-dimensional anatomical models of coronary arteries for four patients with mild to severe stenosis were reconstructed from CT images. FFR and its commonly-used alternatives were derived using the models and CFD. A combination of four types of inflow boundary conditions (BC) was employed: pulsatile, steady, patient-specific and population average. Results: The maximum difference of FFR between pulsatile and steady inflow conditions was 0.02 (2.4%), approximately at a level similar to a reported uncertainty level of clinical FFR measurement (3–4%). The flow with steady BC appeared to represent well the diastolic phase of pulsatile flow, where FFR is measured. Though the difference between patient-specific and population average BCs affected the flow more, the maximum discrepancy of FFR was 0.07 (8.3%), despite the patient-specific inflow of one patient being nearly twice as the population average. Conclusions: In the patients investigated, the type of inflow boundary condition, especially flow pulsatility, does not have a significant impact on computed FFRs in narrowed coronary arteries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niksa Mohammadi Bagheri ◽  
Mahmoud Kadkhodaei ◽  
Shiva Pirhadi ◽  
Peiman Mosaddegh

AbstractThe implementation of intracorneal ring segments (ICRS) is one of the successfully applied refractive operations for the treatment of keratoconus (kc) progression. The different selection of ICRS types along with the surgical implementation techniques can significantly affect surgical outcomes. Thus, this study aimed to investigate the influence of ICRS implementation techniques and design on the postoperative biomechanical state and keratometry results. The clinical data of three patients with different stages and patterns of keratoconus were assessed to develop a three-dimensional (3D) patient-specific finite-element model (FEM) of the keratoconic cornea. For each patient, the exact surgery procedure definitions were interpreted in the step-by-step FEM. Then, seven surgical scenarios, including different ICRS designs (complete and incomplete segment), with two surgical implementation methods (tunnel incision and lamellar pocket cut), were simulated. The pre- and postoperative predicted results of FEM were validated with the corresponding clinical data. For the pre- and postoperative results, the average error of 0.4% and 3.7% for the mean keratometry value ($$\text {K}_{\text{mean}}$$ K mean ) were predicted. Furthermore, the difference in induced flattening effects was negligible for three ICRS types (KeraRing segment with arc-length of 355, 320, and two separate 160) of equal thickness. In contrast, the single and double progressive thickness of KeraRing 160 caused a significantly lower flattening effect compared to the same type with constant thickness. The observations indicated that the greater the segment thickness and arc-length, the lower the induced mean keratometry values. While the application of the tunnel incision method resulted in a lower $$\text {K}_{\text{mean}}$$ K mean value for moderate and advanced KC, the induced maximum Von Mises stress on the postoperative cornea exceeded the induced maximum stress on the cornea more than two to five times compared to the pocket incision and the preoperative state of the cornea. In particular, an asymmetric regional Von Mises stress on the corneal surface was generated with a progressive ICRS thickness. These findings could be an early biomechanical sign for a later corneal instability and ICRS migration. The developed methodology provided a platform to personalize ICRS refractive surgery with regard to the patient’s keratoconus stage in order to facilitate the efficiency and biomechanical stability of the surgery.


2017 ◽  
Vol 3 (2) ◽  
pp. 321-324 ◽  
Author(s):  
Pavlo Yevtushenko ◽  
Florian Hellmeier ◽  
Jan Bruening ◽  
Titus Kuehne ◽  
Leonid Goubergrits

AbstractCFD has gained significant attention as a tool to model aortic hemodynamics. However, obtaining accurate patient-specific boundary conditions still poses a major challenge and represents a major source of uncertainties, which are difficult to quantify. This study presents an attempt to quantify these uncertainties by comparing 14 patient-specific simulations of the aorta (reference method), each exhibiting stenosis, against simulations using the same geometries without the branching vessels of the aortic arch (simplified method).Results were evaluated by comparing pressure drop along the aorta, secondary flow degree (SFD) and surface-averaged wall shear stress (WSS) for each patient. The comparison shows little difference in pressure drop between the two methods (simplified-reference) with the mean difference being 1.2 mmHg (standard deviation: 3.0 mmHg). SFD and WSS, however, show striking differences between the methods: SFD downstream of the stenosis is on average 61 % higher in the simplified cases, while WSS is on average 3.0 Pa lower in the simplified cases.Although unphysiological, the comparison of both methods gives an upper bound for the error introduced by uncertainties in branching vessel boundary conditions. For the pressure drop this error appears to be remarkably low, while being unacceptably high for SFD and WSS.


2011 ◽  
Vol 1 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Giancarlo Pennati ◽  
Chiara Corsini ◽  
Daria Cosentino ◽  
Tain-Yen Hsia ◽  
Vincenzo S. Luisi ◽  
...  

Cavopulmonary connections are surgical procedures used to treat a variety of complex congenital cardiac defects. Virtual pre-operative planning based on in silico patient-specific modelling might become a powerful tool in the surgical decision-making process. For this purpose, three-dimensional models can be easily developed from medical imaging data to investigate individual haemodynamics. However, the definition of patient-specific boundary conditions is still a crucial issue. The present study describes an approach to evaluate the vascular impedance of the right and left lungs on the basis of pre-operative clinical data and numerical simulations. Computational fluid dynamics techniques are applied to a patient with a bidirectional cavopulmonary anastomosis, who later underwent a total cavopulmonary connection (TCPC). Multi-scale models describing the surgical region and the lungs are adopted, while the flow rates measured in the venae cavae are used at the model inlets. Pre-operative and post-operative conditions are investigated; namely, TCPC haemodynamics, which are predicted using patient-specific pre-operative boundary conditions, indicates that the pre-operative balanced lung resistances are not compatible with the TCPC measured flows, suggesting that the pulmonary vascular impedances changed individually after the surgery. These modifications might be the consequence of adaptation to the altered pulmonary blood flows.


Author(s):  
S. Akamatsu ◽  
A. P. Dowling

A theory is developed to describe high frequency three-dimensional thermoacoustic waves in a simplified geometry representing a typical premix combustor. The theory considers linear modes of frequency ω and circumferential mode number m i.e. proportional to eiωt+imθ. The radial and axial dependence is determined for a cylindrical combustor. Simple geometries are investigated systematically to analyze the effect of different inlet boundary conditions to the combustion chamber on the frequency of oscillation and on the susceptibility to instability, both near and away from the cut-off frequencies. The model includes a one-dimensional mean flow, radial mode coupling and idealized combustion processes, which are added in stages to build up an understanding of the complicated acoustics of the premix combustor geometry. It is demonstrated that the flow through the premix ducts provides a frequency-dependent boundary condition at combustor inlet and causes modal coupling. Generalized linear equations of conservation of mass, momentum and energy, together with boundary conditions, are solved to identify the eigenfrequencies, ω, of the total system. Then Real ω determines the frequency of the oscillation, while Imaginary ω indicates the growth rate of the disturbance. It is found that strong resonant peaks in the pressure waves exist close to the cut-off condition for acoustic waves and that the relationship between the unsteady rate of heat release and the flow significantly influences the instability of oscillation.


2012 ◽  
Vol 1 (33) ◽  
pp. 38
Author(s):  
Andrea Ruju ◽  
Pablo Higuera ◽  
Javier L. Lara ◽  
Inigo J. Losada ◽  
Giovanni Coco

This work presents the numerical study of rip current circulation on a barred beach. The numerical simulations have been carried out with the IH-FOAM model which is based on the three dimensional Reynolds Averaged Navier-Stokes equations. The new boundary conditions implemented in IH-FOAM have been used, including three dimensional wave generation as well as active wave absorption at the boundary. Applying the specific wave generation boundary conditions, the model is validated to simulate rip circulation on a barred beach. Moreover, this study addresses the identification of the forcing mechanisms and the three dimensional structure of the mean flow.


2021 ◽  
Vol 1 ◽  
Author(s):  
David Bouget ◽  
André Pedersen ◽  
Sayied Abdol Mohieb Hosainey ◽  
Ole Solheim ◽  
Ingerid Reinertsen

Purpose: Meningiomas are the most common type of primary brain tumor, accounting for ~30% of all brain tumors. A substantial number of these tumors are never surgically removed but rather monitored over time. Automatic and precise meningioma segmentation is, therefore, beneficial to enable reliable growth estimation and patient-specific treatment planning.Methods: In this study, we propose the inclusion of attention mechanisms on top of a U-Net architecture used as backbone: (i) Attention-gated U-Net (AGUNet) and (ii) Dual Attention U-Net (DAUNet), using a three-dimensional (3D) magnetic resonance imaging (MRI) volume as input. Attention has the potential to leverage the global context and identify features' relationships across the entire volume. To limit spatial resolution degradation and loss of detail inherent to encoder–decoder architectures, we studied the impact of multi-scale input and deep supervision components. The proposed architectures are trainable end-to-end and each concept can be seamlessly disabled for ablation studies.Results: The validation studies were performed using a five-fold cross-validation over 600 T1-weighted MRI volumes from St. Olavs Hospital, Trondheim University Hospital, Norway. Models were evaluated based on segmentation, detection, and speed performances, and results are reported patient-wise after averaging across all folds. For the best-performing architecture, an average Dice score of 81.6% was reached for an F1-score of 95.6%. With an almost perfect precision of 98%, meningiomas smaller than 3 ml were occasionally missed hence reaching an overall recall of 93%.Conclusion: Leveraging global context from a 3D MRI volume provided the best performances, even if the native volume resolution could not be processed directly due to current GPU memory limitations. Overall, near-perfect detection was achieved for meningiomas larger than 3 ml, which is relevant for clinical use. In the future, the use of multi-scale designs and refinement networks should be further investigated. A larger number of cases with meningiomas below 3 ml might also be needed to improve the performance for the smallest tumors.


Author(s):  
V Brion ◽  
J Dandois ◽  
R Mayer ◽  
P Reijasse ◽  
T Lutz ◽  
...  

An experimental investigation of the transonic flow past the laminar OALT25 airfoil has been conducted to analyze the impact of laminar flow upon the shock wave dynamics and the existence of a laminar buffet like phenomenon. Tests have been carried out at freestream Mach numbers varying in the range of 0.7–0.8, angle of attack from 0.5° to 4°, and with two tripping configurations at the upper surface of the wing. The (airfoil) chord based Reynolds number is about three million. Results obtained from pressure taps and sensors measurements, as well as Schlieren visualizations of the flow reveal the presence of a laminar buffet phenomenon in sharp contrast with the turbulent phenomenon, as it features a freestream- and chord-based normalized frequency of about unity while turbulent buffet occurs for a frequency close to 0.07 (Jacquin et al., AIAA J 2009; 47). A low-frequency mode, at a frequency of about 0.05 is also present in the laminar situation, notably lower than the high-frequency component. The latter exhibits strong oscillations of the shock foot and vertical wavelike deformations of the shock wave and the former moves the shock back and forth over a small portion of chord, quite similar to the turbulent phenomenon. The mean flow past the laminar wing is characterized by a laminar separation bubble under the shock foot, which likely contributes much to the novel dynamics revealed by the present experiments. Two control strategies of the unsteady shock wave are implemented, one consisting of three-dimensional bumps and one consisting of steady jets blowing transversely to the freestream. It is found that bumps provide a significant reduction of the buffet intensity in the laminar situation. The jets are able to completely remove the flow unsteadiness in both laminar and turbulent conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Neichuan Zhang ◽  
Haiyun Yuan ◽  
Xiangyu Chen ◽  
Jiawei Liu ◽  
Qifei Jian ◽  
...  

Studying the haemodynamics of the central shunt (CS) and modified Blalock–Taussig shunt (MBTS) benefits the improvement of postoperative recovery for patients with an aorta-pulmonary shunt. Shunt configurations, including CS and MBTS, are virtually reconstructed for infants A and B based on preoperative CT data, and three-dimensional models of A, 11 months after CS, and B, 8 months after MBTS, are reconstructed based on postoperative CT data. A series of parameters including energy loss, wall shear stress, and shunt ratio are computed from simulation to analyse the haemodynamics of CS and MBTS. Our results showed that the shunt ratio of the CS is approximately 30% higher than the MBTS and velocity distribution in the left pulmonary artery (LPA) and right pulmonary artery (RPA) was closer to a natural development in the CS than the MBTS. However, energy loss of the MBTS is lower, and the MBTS can provide more symmetric pulmonary artery (PA) flow than the CS. With the growth of infants A and B, the shunt ratio of infants was decreased, but maximum wall shear stress and the distribution region of high wall shear stress (WSS) were increased, which raises the probability of thrombosis. For infant A, the preoperative abnormal PA structure directly resulted in asymmetric growth of PA after operation, and the LPA/RPA ratio decreased from 0.49 to 0.25. Insufficient reserved length of the MBTS led to traction phenomena with the growth of infant B; on the one hand, it increased the eddy current, and on the other hand, it increased the flow resistance of anastomosis, promoting asymmetric PA flow.


2007 ◽  
Vol 7-8 ◽  
pp. 217-222 ◽  
Author(s):  
Ana M. Amaro ◽  
Paulo N.B. Reis ◽  
A.G. Magalhães ◽  
Marcelo F.S.F. de Moura

The aim of present work is to study the influence of the impactor diameter and boundary conditions on low velocity impact on carbon-fibre-reinforced epoxy laminates. Experimental tests were performed on [04,904]s laminates, using a drop weight-testing machine. Circular plates were tested under low velocity impacts for two diameters of the hemispherical impactor, 12.7 mm and 20 mm, and considering similar impact energies, 2.6 J for the first impactor and 3 J for the second one. Rectangular and square plates were analysed under low velocity impacts with different boundary conditions. The impacted plates were inspected by X-radiography. Numerical simulations were also performed considering interface finite elements compatible with three-dimensional solid elements including a cohesive mixed-mode damage model, which allows to model delamination between layers. The impact tests showed that both the impactor’s diameter and boundary conditions have influence on the delaminated area. Good agreement between experimental and numerical analysis for shape, orientation and size of damage was obtained.


Sign in / Sign up

Export Citation Format

Share Document