Comparison of Moving and Stationary Surface Roughness Effects on Bearing Performance, With Emphasis on High Knudsen Number Flow

2012 ◽  
Vol 134 (3) ◽  
Author(s):  
James White

Low clearance gas bearing applications require an understanding of surface roughness effects at increased levels of Knudsen number. Because very little information has been reported on the relative air-bearing influence of roughness location, this paper is focused on a comparison of the effects of moving and stationary striated surface roughness under high Knudsen number conditions. First, an appropriate lubrication equation will be derived based on multiple-scale analysis that extends the work of White (2010, “A Gas Lubrication Equation for High Knudsen Number Flows and Striated Rough Surfaces,” ASME J. Tribol., 132, p. 021701). The resulting roughness averaged equation, applicable for both moving and stationary roughness over a wide range of Knudsen numbers, allows an arbitrary striated roughness orientation with regard to both (1) the direction of surface translation and (2) the bearing coordinates. Next, the derived lubrication equation is used to analyze and compare the influences produced by a stepped transverse roughness pattern located on the moving and the stationary bearing surface of a wedge bearing geometry of variable inclination. Computed results are obtained for both incompressible and compressible lubricants, but with an emphasis on high Knudsen number flow. Significant differences in air-bearing performance are found to occur for moving versus stationary roughness.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
James White

Design of a near contact air bearing interface such as that created by a recording head slider and data storage disk requires consideration of a lubrication equation that is appropriate for high Knudsen number flows. The Poiseuille flow database reported by Fukui and Kaneko, 1990 [“A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems,” ASME J. Tribol., 112, pp. 78–83] is appropriate over a wide range of Knudsen numbers and is used throughout the data storage industry for analysis of the low flying recording head slider air bearing. However, at such low clearances, the topography of the air bearing surfaces also comes into question, making it important to consider both rarefaction and surface roughness effects in the air bearing design. In order to simplify the air bearing analysis of rough surfaces, averaging techniques for the lubrication equation have been developed for situations where the number of roughness elements (or waves) is either much greater or much less than the gas bearing number. Between these two extremes there are currently no roughness averaging methods available. Although some analytical and numerical studies have been reported for continuum and first-order slip conditions with simple geometries, little or no results have appeared that include both surface roughness and high Knudsen number flows outside the limited ranges where surface averaging techniques are used. In order to better understand the influence of transverse surface roughness over a wide range of Knudsen numbers and the relationship of key parameters involved, this paper describes a primarily analytical air bearing study of a wide, rough surface slider bearing using the Poiseuille flow database reported by Fukui and Kaneko. The work is focused outside the limited ranges where current surface averaging methods for the lubrication equation are expected to be valid.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
James White

Current industrial applications require a consideration of two-dimensional surface roughness effects in design and optimization of fluid bearings. Although the influence of striated surface roughness on fluid lubrication is now at a fairly mature level of understanding, the knowledge and understanding of two-dimensional roughness effects is not nearly at the same level as that achieved over the past several decades for one-dimensional striations. The subject of this paper includes the formulation of a practical “roughness averaged” lubrication equation that is appropriate for two-dimensional surface roughness and applicable over a wide range of Knudsen numbers. After derivation by multiple-scale analysis, the resulting lubrication equation is specialized to treat the patterned data islands located on a storage medium as a two-dimensional roughness pattern, and then used to determine the effect of this roughness on the air-bearing interface between recording head slider and disk. The roughness averaged lubrication equation is solved numerically by a variable-grid finite-difference algorithm, and computed results are included for several bearing geometries.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
James White

This paper describes the derivation and numerical solution of a lubrication equation appropriate for high Knudsen number flows and certain types of striated rough surfaces. The derivation begins with the compressible form of the lubrication equation together with the nonlinear series form of the Poiseuille flow reported by Fukui and Kaneko (1990, “A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems,” ASME J. Tribol., 112, pp. 78–83.). A multiple-scale analysis is performed on the lubrication equation for a finite-width time-dependent bearing and is limited to either stationary-transverse or longitudinal striated surface roughness of very short length scale. The rough surface averaging that takes place within the multiple-scale analysis includes a fully coupled treatment of the Poiseuille flow. What results is an especially nonlinear lubrication equation with averaged surface roughness effects that is appropriate for high Knudsen number analysis. A rotational transformation is also introduced to provide the roughness averaged lubrication equation in a form that allows analysis of the skewed orientation of a recording head slider with roughness defined relative to the direction of disk motion but with the lubrication equation conveniently expressed in the coordinate system of the slider. A factored-implicit numerical algorithm is described that provides the solution of the roughness averaged lubrication equation. Even though the lubrication equation is highly nonlinear, the numerical scheme is crafted to be fully second-order, time-accurate, and noniterative for tracking the solution in time either to an asymptotic steady-state or in response to a dynamic event. Numerical solutions of several simple geometry bearings are presented that utilize parameters that are typical of the slider-disk interface of current hard disk drives. It is anticipated that the primary benefit of this work may be the ability to accurately and efficiently include the influence of discrete disk data tracks in the air bearing design of very low clearance recording head sliders.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
James White

Analytical methods and techniques are required for design and analysis of low clearance gas-bearings that account for the combined influence of surface roughness and Knudsen number. Analytical methods for the lubrication equation are currently available for bearings that are either high wave number-limited or high bearing number-limited. There are few useful analytical methods in the range between these limiting extremes that account for the combined effect of roughness and rarefaction. That is the focus of this paper as it extends the work reported by White (2013, “Surface Roughness Effects in the Region Between High Wave Number and High Bearing Number-Limited Lubricant Flows,” ASME J. Tribol., 135(4), p. 041706) to include rarefaction effects. Results of an analytical study will be reported that investigates a wedge bearing geometry using perturbation methods and multiple-scale analysis over a wide range of Knudsen numbers for roughness on moving and stationary surfaces. The solution technique developed allows nonlinear aspects of the lubrication equation to be retained in the analysis. Solutions will be presented graphically and discussed. Results indicate that most of the bearing sensitivity to Knudsen number can be accounted for by a modified form of the bearing number.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
James White

The ability to predict surface roughness effects is now well established for gas bearings that satisfy the requirements for either high wave number–limited or high bearing number–limited conditions. However, depending on the parameters involved, a given bearing configuration may not satisfy either of these limited requirements for analysis of roughness effects. Well-established methods for the analysis of surface roughness effects on gas lubrication are not yet available outside of these two limited regions. With that as motivation, this paper then reports an analytical investigation of rough surface gas-bearing effects for the region bounded on one side by high wave number–limited conditions and on the other by high bearing number–limited effects. It emphasizes the gas-bearing region, where shear-driven flow rate and pressure-driven flow rate due to surface roughness are of the same order of magnitude. This paper makes use of the compressible continuum form of the Reynolds equation of lubrication together with multiple-scale analysis to formulate a governing lubrication equation appropriate for the analysis of striated roughness effects collectively subject to high bearing number (Λ→∞), high inverse roughness length scale (β→∞), and unity order of magnitude-modified bearing number based on roughness length scale (Λ2=Λ/β=O(1)). The resulting lubrication equation is applicable for both moving and stationary roughness and can be applied in either averaged or un-averaged form. Several numerical examples and comparisons are presented. Among them are results that illustrate an increased sensitivity of bearing force to modified bearing number for Λ2=O(1). With Λ2 in this range, bearings with either moving or stationary roughness exhibit increased force sensitivities, but the effects act in opposite ways. That is, while an increase in modified bearing number causes a decrease in force for stationary roughness, the same increase in modified bearing number causes an increase in force for moving roughness.


1983 ◽  
Vol 105 (1) ◽  
pp. 131-137 ◽  
Author(s):  
J. W. White

The influence of two sided striated surface roughness on bearing load carrying capacity is analyzed for very low clearance gas films. As was done for the case of stationary surface roughness [1], a model lubrication equation appropriate for extremely high gas bearing number films is solved analytically for several simple geometry bearings. The analytic solution provides information on the exact relationship between pressure and roughness which makes it possible to ensemble average the lubrication equation before solution, greatly simplifying the solution procedure. It is found that the translating surface roughness has an influence on load similar to that caused by the stationary surface. Exact solutions with the current method are compared with those of the theory attributed to Christensen and To̸nder. The results are strikingly different and serve to bring attention to the fact that for high bearing number compressible lubrication, the Christensen-To̸nder theory is inappropriate. The results reported here should find application in the computer peripherals area where read/write heads now routinely hover over a spinning disk at clearances of 0.25 micron.


1989 ◽  
Vol 111 (1) ◽  
pp. 17-22 ◽  
Author(s):  
H. Hashimoto ◽  
S. Wada

A new theoretical approach to turbulent lubrication problems including the surface roughness effects is described. On the basis of a logarithmic velocity distribution law in the turbulent boundary layers, the resistance laws for pressure and shear flows in the lubricant film are formulated separately in both cases of smooth and homogeneous rough surfaces. Moreover, combining the bulk flow concept proposed by Hirs with the formulated resistance laws, the generalized turbulent lubrication equation including the surface roughness effects is derived. Some numerical results for the modified turbulence coefficients are presented in the graphic form for different values of relative roughness, and the effects of surface roughness on the turbulent lubrication characteristics are generally discussed.


Author(s):  
R. J. Boyle ◽  
R. G. Senyitko

The aerodynamic performance of a turbine vane was measured in a linear cascade. These measurements were conducted for exit-true chord Reynolds numbers between 150,000 and 1,800,000. The vane surface rms roughness-to-true chord ratio was approximately 2 × 10−4. Measurements were made for exit Mach numbers between 0.3 and 0.9 to achieve different loading distributions. Measurements were made at three different inlet turbulence levels. High and intermediate turbulence levels were generated using two different blown grids. The turbulence was low when no grid was present. The wide range of Reynolds numbers was chosen so that, at the lower Reynolds numbers the rough surfaces would be hydraulically smooth. The primary purpose of the tests was to provide data to verify CFD predictions of surface roughness effects on aerodynamic performance. Data comparisons are made using a two-dimensional Navier-Stokes analysis. Both two-equation and algebraic roughness turbulence models were used. A model is proposed to account for the increase in loss due to roughness as the Reynolds number increases.


2007 ◽  
Vol 129 (4) ◽  
pp. 809-817 ◽  
Author(s):  
Shun Wang ◽  
Yuan-zhong Hu ◽  
Wen-zhong Wang ◽  
Hui Wang

The objective of the present work is to investigate experimentally and numerically the influences of surface roughness, produced by typical machining processes, on friction performances in lubricated-point contacts. Prior to the full experimental investigation, a series of tests had been conducted to examine the experimental errors, resulting from repeated tests on the same specimen but at different tracks, with different amounts of lubricant supply, or after the sample reinstallation. Then, the effects of amplitude and texture of surface roughness on friction behavior are investigated in rotational and reciprocal-mode tests, respectively. The measured friction, averaged over the repeated tests and plotted as a function of sliding speed, shows Stribeck-type curves, which manifest the transition from full-film, mixed, to boundary lubrication. Results show that the roughness amplitude imposes a strong influence on the magnificence of friction and the route of lubrication transition. It is also observed that transverse roughness would give rise to a smaller friction coefficient than the longitudinal one under the same operating conditions. Moreover, the deterministic numerical solution of mixed lubrication has been extended to evaluate friction between rough surfaces over a wide range of lubrication regimes. The numerical simulation results are compared and agree very well with experiments.


1980 ◽  
Vol 102 (4) ◽  
pp. 445-451 ◽  
Author(s):  
J. W. White

The effect of surface roughness on load carrying capacity of very low clearance gas bearings is analyzed. A model lubrication equation appropriate for high bearing number, finite width films is first derived. Then, by obtaining exact solutions to several simple geometry bearings, the “closure problem” or statistical relationship of pressure and spacing is revealed. The lubrication equation is then ensamble averaged and solved for several test cases. The seemingly subtle differences in ensamble averaging the transverse terms in the lubrication equation are compared for the current theory and a previous method and are shown to produce vast differences in load carrying capacity. The current method is expected to be the correct approach since it is based on a generalization of exact solutions.


Sign in / Sign up

Export Citation Format

Share Document