Experimental Investigation of Coil Curvature Effect on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger

Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.

Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work introduces an experimental study of horizontal shell and coil heat exchangers. Characteristics of the convective heat transfer in this type of heat exchangers and the friction factor for fully developed flow through their helically coiled tube (HCT) were investigated. The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid-operating conditions. Here, five heat exchangers of counterflow configuration were constructed with different HCT torsions (λ) and tested at different mass flow rates and inlet temperatures of both sides of the heat exchangers. In total, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of both sides of the heat exchangers and the overall heat transfer coefficient increase by decreasing coil torsion. At lower and higher HCT-side Reynolds number (Ret), the average increase in the HCT-side average Nusselt number (Nu¯t) is of 108.7% and 58.6%, respectively, when λ decreases from 0.1348 to 0.0442. While, at lower and higher shell-side Reynolds number (Resh), the average increase in the shell-side average Nusselt number (Nu¯sh) is of 173.9% and 69.5%, respectively, when λ decreases from 0.1348 to 0.0442. In addition, a slight increase of 6.4% is obtained in the HCT Fanning friction factor (fc) at lower Ret when λ decreases from 0.1348 to 0.0442, and this effect vanishes with increasing Ret. Furthermore, correlations for Nu¯t, Nu¯sh, and fc are obtained.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Hie Chan Kang ◽  
Se-Myong Chang

This study proposes an empirical correlation for laminar natural convection applicable to external circular finned-tube heat exchangers with wide range of configuration parameters. The transient temperature response of the heat exchangers was used to obtain the heat transfer coefficient, and the experimental data with their characteristic lengths are discussed. The data lie in the range from 1 to 1000 for Rayleigh numbers based on the fin spacing: the ratio of fin height to tube diameter ranges from 0.1 to 0.9, and the ratio of fin pitch to height ranges from 0.13 to 2.6. Sixteen sets of finned-tube electroplated with nickel–chrome were tested. The convective heat transfer coefficients on the heat exchangers were measured by elimination of the thermal radiation effect from the heat exchanger surfaces. The Nusselt number was correlated with a newly suggested composite curve formula, which converges to the quarter power of the Rayleigh number for a single cylinder case. The proposed characteristic length for the Rayleigh number is the fin pitch while that for the Nusselt number is mean flow length, defined as half the perimeter of the mean radial position inside the flow region bounded by the tube surface and two adjacent fins. The flow is regarded as laminar, which covers heat exchangers from a single horizontal cylinder to infinite parallel disks. Consequently, the result of curve fitting for the experimental data shows the reasonable physical interpretation as well as the good quantitative agreement with the correction factors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1570
Author(s):  
Yongfeng Ju ◽  
Tiezhu Zhu ◽  
Ramin Mashayekhi ◽  
Hayder I. Mohammed ◽  
Afrasyab Khan ◽  
...  

The hydrothermal performance of multiple semi-twisted tape inserts inside a heat exchanger pipe is numerically examined in three-dimensions. This study aims to find the optimum case for having the highest heat transfer enhancement with the lowest friction factor using nanofluid (Al2O3/water). A performance evaluation criterion (PEC) is defined to characterize the performance based on both friction factor and heat transfer. It was found that increasing the number of semi-twisted tapes increases the number of swirl flow streams and leads to an enhancement in the local Nusselt number as well as the friction factor. The average Nusselt number increases from 15.13 to 28.42 and the average friction factor enhances from 0.022 to 0.052 by increasing the number of the semi-twisted tapes from 0 to 4 for the Reynolds number of 1000 for the base fluid. By using four semi-twisted tapes, the average Nusselt number increases from 12.5 to 28.5, while the friction factor reduces from 0.155 to 0.052 when the Reynolds number increases from 250 to 1000 for the base fluid. For the Reynolds number of 1000, the increase in nanofluid concentration from 0 to 3% improves the average Nusselt number and friction factor by 6.41% and 2.29%, respectively. The highest PEC is equal to 1.66 and belongs to the Reynolds number of 750 using four semi-twisted tape inserts with 3% nanoparticles. This work offers instructions to model an advanced design of twisted tape integrated with tubes using multiple semi-twisted tapes, which helps to provide a higher amount of energy demand for solar applications.


Author(s):  
Khwanchit Wongcharee ◽  
Somsak Pethkool ◽  
Chinaruk Thianpong

This paper describes an experimental study of turbulent convective heat transfer and flow friction characteristics in a double tube heat exchanger equipped with propellers (2 blade-type). The propellers are used as the decaying swirl generators in the inner tube. The experiments were performed using the propellers with four different interval lengths (l = 1D, 2D, 3D and 4D where D is diameter of the inner tube), for the Reynolds number ranging from 5000 to 32,000, using water with temperature of 27°C and 70°C as cold and hot working fluids, respectively. The data of the tube equipped with the propellers are reported together with those of the plain tube, for comparison. The obtained results demonstrate that the heat transfer rate in term of Nusselt number (Nu) and friction factor (f) in the tube with propellers are higher than those in the plain tube at the similar operating conditions. This is due to the chaotic mixing and efficient interruption of thermal boundary layer caused by the propellers. In addition, the Nusselt number and friction factor in the tube fitted with the propellers increase as the interval length decreases. Depending on Reynolds number and interval length, Nusselt numbers and friction factors in the tube fitted with the propellers are augmented to 1.95 to 2.3 times and 5.8 to 13.2 times of those in the plain tube. In addition, the correlations of the Nusselt number (Nu) and the friction factor (f) for tube fitted with the propellers are reported and the performance evaluation to access the real benefits of using the turbulators is also determined.


2015 ◽  
Vol 787 ◽  
pp. 172-176
Author(s):  
R. Maradona ◽  
S. Rajkumar

The applications of heat exchangers are vast and the enhancement of heat transfer and compact size are the key factors for designing the heat exchangers in order to achieve energy savings. In the field of tubular heat exchangers one of the possible ways for reducing the space occupied by the exchanger is by bending tube axis in helical shape. This option is particularly suitable when construction simplicity is needed and the geometry of the place in which the exchanger has to be housed is the cylindrical one. In this paper, an attempt is made to enhance the heat transfer rate without application of any external power. This is achieved by providing the helical tube in tubes. The parameters influencing the nature of flow in a helical coil heat exchanger are the tube geometry namely pitch coil diameter, pitch and tube diameter. CFD analysis is carried out to study these geometry effects on heat transfer and hydraulic characteristics by varying Reynolds number (hot fluid). The CFD results of velocity and temperature distribution in the heat exchanger are used to estimate the Nusselt number and heat transfer coefficient. This helps to arrive at an optimum value of Reynolds number and Nusselt number for the corresponding tube-to-coil diameter ratios.


Author(s):  
Kriengkrai Assawamartbunlue ◽  
Channarong Wantha

Heat exchangers are the important parts in thermoacoustic refrigerators. Types and configurations of the heat exchangers affect flow behaviors through stacks, and heat transfer behaviors between working fluids and the heat exchangers. Steady-flow heat transfer correlations to design a heat exchanger are not suitable for the thermoacoustic refrigerators due to their oscillatory flow conditions in resonator tubes. In this paper, a heat transfer correlation for a spiral-coil heat exchanger is presented. The results from the experimental study were used to develop an empirical equation between the Colburn-j factor, the Prandtl number, and the Reynolds number to correlate the oscillating heat transfer coefficient at the spiral-coil heat exchangers. The results showed that using steady-flow heat transfer correlations for analyses and design of the heat exchanger could result in distinguished errors. The heat transfer correlations developed for oscillatory flows on fin heat exchangers are also not suitable to predict heat transfer coefficients for spiral-coil heat exchanger due to difference in flow behaviors on the heat transfer surface. For oscillatory flows, the heat transfer coefficients can be improved by using curved-liked surface such as spiral coil instead of straightlike surface such as fin coil. The relationships between the oscillating heat transfer coefficients at the heat exchangers, drive ratios, and operating frequencies are also presented. Higher drive ratios and operating frequency result in greater heat transfer coefficients.


Author(s):  
M. R. Salem ◽  
R. K. Ali ◽  
R. Y. Sakr ◽  
K. M. Elshazly

This study presents an experimental investigation of the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to the friction factor for fully developed flow through their helically coiled tube (HCT). Five heat exchangers of counterflow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of γ-Al2O3/water nanofluid in the HCT. The tests were performed for γ-Al2O3 with average size of 40 nm and particles volume concentration (ϕ) from 0% to 2% for 0.0392≤δ≤0.1194. Totally, 750 test runs were performed from which the HCT-average Nusselt number (Nu¯t) and fanning friction factor (fc) were calculated. Results illustrated that Nu¯t and fc of nanofluids are higher than those of the pure water at same flow condition, and this increase goes up with the increase in ϕ. When ϕ increases from 0% to 2%, the average increase in Nu¯t is of 59.4–81% at lower and higher HCT-Reynolds number, respectively, and the average increase in fc is of 25.7% and 27.4% at lower and higher HCT-Reynolds number, respectively, when ϕ increases from 0% to 2% for δ=0.1194. In addition, results showed that Nu¯t and fc increase by increasing coil curvature ratio. When δ increases from 0.0392 to 0.1194 for ϕ=2%, the average increase in Nu¯t is of 130.2% and 87.2% at lower and higher HCT-Reynolds number, respectively, and a significant increase of 18.2–7.5% is obtained in the HCT-fanning friction factor at lower and higher HCT-Reynolds number, respectively. Correlations for Nu¯t and fc as a function of the investigated parameters are obtained.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


2016 ◽  
Vol 37 (4) ◽  
pp. 137-159 ◽  
Author(s):  
Rafał Andrzejczyk ◽  
Tomasz Muszyński

Abstract The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Chin Yung Shin ◽  
Normah Mohd-Ghazali

In this research, the trapezoidal shaped chevron plate heat exchanger (PHE) is simulated using computational fluid dynamics (CFD) software to determine its heat transfer capacity and friction factor. The PHE is modelled with chevron angles from 30° to 60°, and also the performances are compared with the plain PHE. The validation is done by comparing simulation result with published references using 30° trapezoidal chevron PHE. The Nusselt number and friction factor obtained from simulation model is plotted against different chevron angles. The Nusselt number and friction factor is also compared with available references, which some of the references used sinusoidal chevron PHE. The general pattern of Nusselt number and friction factor with increasing chevron angle agrees with the references. The heat transfer capacity found in current study is higher than the references used, and at the same time, the friction factor also increased. Besides this, it is also found that the counter flow configuration has better heat transfer capacity performance than the parallel flow configuration.


Sign in / Sign up

Export Citation Format

Share Document