Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Gayatri K. Mistri ◽  
Suresh K. Aggarwal ◽  
Douglas Longman ◽  
Avinash K. Agarwal

Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel's oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels.

Author(s):  
S. Som ◽  
Z. Wang ◽  
W. Liu ◽  
D. E. Longman

The current study compares the predictions by four different published mechanisms in literature which have been used for 3 dimensional compression ignition engine simulations. These four mechanisms use two different sets of surrogates: (a) methyl decanoate, methyl 9-decenoate, and n-heptane, (b) methyl butanoate and n-heptane. The mechanisms include: (1) 115 species and 460 reactions [1] using surrogate mixture (a); (2) 77 species and 209 reactions [2] using surrogate mixture (a); (3) 145 species and 869 reactions [3] using surrogate mixture (b); (4) 41 species and 150 reactions [4] using surrogate mixture (b). The different reduction techniques implemented to obtain the reduced mechanisms from the detailed mechanisms are briefly described. The surrogate mixture compositions are then modified to match the cetane number of the real biodiesel fuels. The experimental data for comparison include jet-stirred reactor data for species concentrations for biodiesel derived from rapeseed oil and 3 dimensional constant volume combustion data (for ignition, combustion, and emission characteristics), engine data (for pressure, heat release rate, and emission characteristics) for soy-derived biodiesel. 0-D and 3-D constant volume simulations with all the mechanisms can capture the general experimental trends quite well. Large surrogate models and mechanisms tend to provide better predictions at the expense of increased computational costs. The 115 species and 460 reaction mechanism was observed to perform the best among the mechanisms in predicting the jet-stirred reactor and 3-D constant volume data. It was observed that all the mechanisms are able to qualitatively capture the engine performance and emission characteristics.


Author(s):  
Anita I. Ramírez ◽  
Sibendu Som ◽  
Lisa A. LaRocco ◽  
Timothy P. Rutter ◽  
Douglas E. Longman

There has been an extensive worldwide search for alternate fuels that fit with the existing infrastructure and would thus displace fossil-based resources. In metabolic engineering work at Argonne National Laboratory, strains of fuel have been designed that can be produced in large quantities by photosynthetic bacteria, eventually producing a heavy alcohol called phytol (C20H40O). Phytol’s physical and chemical properties (cetane number, heat of combustion, heat of vaporization, density, surface tension, vapor pressure, etc.) correspond in magnitude to those of diesel fuel, suggesting that phytol might be a good blending agent in compression ignition (CI) engine applications. The main reason for this study was to investigate the feasibility of using phytol as a blending agent with diesel; this was done by comparing the performance and emission characteristics of different blends of phytol (5%, 10%, 20% by volume) with diesel. The experimental research was performed on a single-cylinder engine under conventional operating conditions. Since phytol’s viscosity is much higher than that of diesel, higher-injection-pressure cases were investigated to ensure the delivery of fuel into the combustion chamber was sufficient. The influence of the fuel’s chemical composition on performance and emission characteristics was captured by doing an injection timing sweep. Combustion characteristics as shown in the cylinder pressure trace were comparable for the diesel and all the blends of phytol at each of the injection timings. The 5% and 10% blends show lower CO and similar NOx values. However, the 20% blend shows higher NOx and CO emissions, indicating that the chemical and physical properties have been altered substantially at this higher percentage. The combustion event was depicted by performing high-speed natural luminosity imaging using endoscopy. This revealed that the higher in-cylinder temperatures for the 20% blend are the cause for its higher NOx emissions. In addition, three-dimensional simulations of transient, turbulent nozzle flow were performed to compare the injection and cavitation characteristics of phytol and its blends. Specifically, area and discharge coefficients and mass flow rates of diesel and phytol blends were compared under corresponding engine operating conditions. The conclusion is that phytol may be a suitable blending agent with diesel fuel for CI applications.


2017 ◽  
Vol 36 (3) ◽  
pp. 535-555 ◽  
Author(s):  
Mandeep Singh ◽  
Surjit Kumar Gandhi ◽  
Sunil Kumar Mahla ◽  
Sarbjot Singh Sandhu

The present work explores the use of argemone mexicana (non-edible and adulterer to mustard oil) biodiesel in multicylinder compression ignition, indirect injection engine. Argemone Mexicana biodiesel was produced by transesterification process and the important physico-chemical properties of various blends were investigated. Blends of diesel/biodiesel (AB10, AB20, AB30 and AB40) were prepared and used for analysing the engine performance and emission characteristics at varying loads (0, 25, 50 and 75%) and speeds (2500–4000 r/min). The results show improvement in indicated thermal efficiency and indicated specific fuel consumption with increased proportion of biodiesel in diesel, when compared to conventional diesel. In addition, exhaust emissions such as carbon monoxide, unburnt hydrocarbon and smoke opacity were significantly reduced by AOME/diesel blends. The improvement in engine performance and exhaust emissions were observed up to 30% blending of AOME/diesel. Beyond that, higher blend (AB40) showed deterioration in performance characteristics in contrast to AB30 but still better as compared to conventional diesel.


The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum products. Petroleum based fuels are obtained from limited reserves. In the wake of this situation, there is an urgent need to promote use of alternative fuel which must be technically feasible, economically competitive, environmentally acceptable and readily available. In the present study, Mahua seed oil methyl esters (MSOME) were prepared through transesterification and evaluation of important physico-chemical properties was carried and the properties were found within acceptable limits. A compression ignition engine was fuelled with three blends of MSOME with diesel (10, 20 and 30% on volume basis) and various performance and emission characteristics were evaluated and results compared with baseline data of diesel. The results suggest the BTE was higher for MSOME blends and BSFC, HC and smoke opacity were lower as compared to diesel fuel. This may be attributed to improved combustion for MSOME are oxygenated fuels and have higher cetane number. The values of NOx were found almost nearer for all blends as compared to diesel. Addition of 1-hexanol (Ignition improver) 0.5%, 1% volume ratios to the optimum blend (MSOME30) for evaluating the engine performance and emissions parameters and the main purpose of ignition improver is to improve combustion process and reduction in engine emissions. Finally results shows that performance and emissions have been to justify the potentiality of the mahua seed oil methyl esters as alternative fuel for compression ignition engines without any modifications


2021 ◽  
pp. 1-24
Author(s):  
Avinash Kumar Agarwal ◽  
Akhilendra P. Singh ◽  
Vikram Kumar

Abstract Researchers have investigated reactivity-controlled compression ignition (RCCI) combustion in the past several years because of its excellent combustion, performance, and emission features. In this experimental study, the RCCI combustion strategy was investigated using mineral diesel/ butanol fuel-pair at various premixed ratios (rp) on an energy basis (rp= 0.25, 0.50, and 0.75) at varying engine loads (BMEP of 1, 2, 3, and 4 bar) vis-à-vis baseline compression ignition (CI) combustion (rp= 0.0) strategy. Experiments were performed at constant engine speed (1500 rpm) in a single-cylinder research engine equipped with state-of-the-art features. The outcome of the investigation showed that port injection of Butanol as low reactivity fuel (LRF) improved the combustion and yielded superior engine performance than baseline CI combustion strategy. Engine exhaust emissions exhibited significantly lower nitrogen (NOx) oxides with butanol RCCI combustion strategy than baseline CI combustion strategy. Increasing rp of Butanol showed improved combustion and emission characteristics; however, performance characteristics were not affected significantly. Particulate characteristics of the RCCI combustion strategy also showed a significant reduction in particle number concentration than baseline CI combustion. Slightly different combustion, performance, and emission characteristics of mineral diesel/ butanol fueled RCCI combustion strategy compared to other test fuels such as mineral diesel/ methanol, and mineral diesel/ ethanol-fueled RCCI combustion strategy was an interesting observation of this study. Overall, this study indicated that Butanol could be used as LRF in RCCI combustion strategy engines to achieve superior combustion and emission characteristics.


Author(s):  
Y Ren ◽  
Z H Huang ◽  
D M Jiang ◽  
L X Liu ◽  
K Zeng ◽  
...  

The performance and emissions of a compression ignition engine fuelled with diesel/dimethoxymethane (DMM) blends were studied. The results showed that the engine's thermal efficiency increased and the diesel equivalent brake specific fuel consumption (b.s.f.c.) decreased as the oxygen mass fraction (or DMM mass fraction) of the diesel/DMM blends increased. This change in the diesel/DMM blends was caused by an increased fraction of the premixed combustion phase, an oxygen enrichment, and an improvement in the diffusive combustion phase. A remarkable reduction in the exhaust CO and smoke can be achieved when operating on the diesel/DMM blend. Flat NO x/smoke and thermal efficiency/smoke curves are presented when operating on the diesel/DMM fuel blends, and a simultaneous reduction in both NO x and smoke can be realized at large DMM addition. Thermal efficiency and NO x give the highest value at 2 per cent oxygen mass fraction (or 5 per cent DMM volume fraction) for the combustion of diesel/DMM blends.


Sign in / Sign up

Export Citation Format

Share Document