Lattice Boltzmann Simulation of Lithium Peroxide Formation in Lithium–Oxygen Battery

Author(s):  
M. Jithin ◽  
Malay K. Das ◽  
Ashoke De

Present research deals with multiphysics, pore-scale simulation of Li–O2 battery using multirelaxation time lattice Boltzmann method. A novel technique is utilized to generate an idealized electrode–electrolyte porous media from the known macroscopic variables. Present investigation focuses on the performance degradation of Li–O2 cell due to the blockage of the reaction sites via Li2O2 formation. Present simulations indicate that Li–air and Li–O2 batteries primarily suffer from mass transfer limitations. The study also emphasizes the importance of pore-scale simulations and shows that the morphology of the porous media has a significant impact on the cell performance. While lower porosity provides higher initial current, higher porosity maintains sustainable output.

2015 ◽  
Vol 161 (6) ◽  
pp. 1453-1481 ◽  
Author(s):  
Ting Zhang ◽  
Baochang Shi ◽  
Changsheng Huang ◽  
Hong Liang

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Yuto Takeuchi ◽  
Junichiro Takeuchi ◽  
Tomoki Izumi ◽  
Masayuki Fujihara

Abstract This study simulates pore-scale two-dimensional flows through porous media composed of circular grains with varied pore-scale heterogeneity to analyze non-Darcy flow effects on different types of porous media using the lattice Boltzmann method. The magnitude of non-Darcy coefficients and the critical Reynolds number of non-Darcy flow were computed from the simulation results using the Forchheimer equation. Although the simulated porous materials have similar porosity and representative grain diameters, larger non-Darcy coefficients and an earlier onset of non-Darcy flow were observed for more heterogeneous porous media. The simulation results were compared with existing correlations to predict non-Darcy coefficients, and the large sensitivity of non-Darcy coefficients to pore-scale heterogeneity was identified. The pore-scale heterogeneity and resulting flow fields were evaluated using the participation number. From the computed participation numbers and visualized flow fields, a significant channeling effect for heterogeneous media in the Darcy flow regime was confirmed compared with that for homogeneous media. However, when non-Darcy flow occurs, this channeling effect was alleviated. This study characterizes non-Darcy effect with alleviation of the channeling effect quantified with an increase in participation number. Our findings indicate a strong sensitivity of magnitude and onset of non-Darcy effect to pore-scale heterogeneity and imply the possibility of evaluating non-Darcy effect through numerical analysis of the channeling effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ping Wang

Discrete element method (DEM) is used to produce dense and fixed porous media with rigid mono spheres. Lattice Boltzmann method (LBM) is adopted to simulate the fluid flow in interval of dense spheres. To simulating the same physical problem, the permeability is obtained with different lattice number. We verify that the permeability is irrelevant to the body force and the media length along flow direction. The relationships between permeability, tortuosity and porosity, and sphere radius are researched, and the results are compared with those reported by other authors. The obtained results indicate that LBM is suited to fluid flow simulation of porous media due to its inherent theoretical advantages. The radius of sphere should have ten lattices at least and the media length along flow direction should be more than twenty radii. The force has no effect on the coefficient of permeability with the limitation of slow fluid flow. For mono spheres porous media sample, the relationship of permeability and porosity agrees well with the K-C equation, and the tortuosity decreases linearly with increasing porosity.


Sign in / Sign up

Export Citation Format

Share Document