Heat Transfer and Flow Characteristics of Two-Pass Parallelogram Channels With Attached and Detached Transverse Ribs

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
T. M. Liou ◽  
S. W. Chang ◽  
Y. A. Lan ◽  
S. P. Chan ◽  
Y. S. Liu

The full-field Nusselt number (Nu) distributions and flow fields are presented, respectively, using steady-state infrared thermography (IR) and particle image velocimetry (PIV) in the two-pass parallelogram channels with attached and detached transverse ribs. These square transverse ribs on two opposite channel walls are in-line arranged with rib-height to duct-height ratio of 0.1 and rib pitch-to-height ratio of 10. For the detached ribs, the detached distance between rib and channel wall is 0.38 rib height. With the measurements of Fanning friction factor (f), the thermal performance factors (TPF) for the attached and detached-rib cases are comparatively examined. A set of Nu, f, and TPF with the associated flow measurements at the Reynolds number range of 5000 ≤ Re ≤ 20,000 is selected to disclose the differential heat transfer mechanisms and efficiencies between the attached and detached ribbed channels. Empirical correlations evaluating the area-averaged Nusselt numbers (Nu¯) and f factors are devised to assist the relevant design activities.

Author(s):  
Tong-Miin Liou ◽  
Shyy-Woei Chang ◽  
Yi-An Lan ◽  
Shu-Po Chan ◽  
Yu-Shuai Liu

The full-field endwall Nusselt number (Nu) distributions and flow field are presented respectively using steady-state infrared thermography and particle image velocimetry (PIV) for the two-pass parallelogram channels with attached and detached transverse ribs. These square transverse ribs on two opposite channel endwalls are in-line arranged with rib-height to duct-height ratio of 0.1 and rib-pitch to rib-height ratio of 10. For the detached ribs, the detached distance between rib and channel endwall is 0.38 rib height. With the measurements of Fanning friction factor (f), heat transfer distributions and flow field features, the thermal performance factors (TPF) for the attached and detached rib cases are comparatively examined. A set of Nu, f and TPF results with the associated flow measurements at the test conditions of 5,000≤Re≤20,000 is selected to disclose the differential heat transfer enhancement mechanisms and heat transfer efficiencies between the attached and detached ribbed channels. Empirical correlations evaluating the endwall area-averaged Nusselt numbers (Nu) and f factors are devised to assist the relevant design activities.


2007 ◽  
Vol 129 (12) ◽  
pp. 1732-1736 ◽  
Author(s):  
Rong Fung Huang ◽  
Shyy Woei Chang ◽  
Kun-Hung Chen

The flow characteristics and the heat transfer properties of the rectangular channels with staggered transverse ribs on two opposite walls are experimentally studied. The rib height to channel height ratio ranges from 0.15 to 0.61 (rib height to channel hydraulic diameter ratio from 0.09 to 0.38). The pitch to rib height ratio covers from 2.5 to 26. The aspect ratio of the rectangular channel is 4. The flow characteristics are studied in a water channel, while the heat transfer experiments are performed in a wind tunnel. Particle image velocimetry (PIV) is employed to obtain the quantitative flow field characteristics. Fine-wire thermocouples imbedded near the inner surface of the bottom channel wall are used to measure the temperature distributions of the wall and to calculate the local and average Nusselt numbers. Using the PIV measured streamline patterns, various characteristic flow modes, thru flow, oscillating flow, and cell flow, are identified in different regimes of the domain of the rib height to channel height ratio and pitch to rib height ratio. The vorticity, turbulence intensity, and wall shear stress of the cell flow are found to be particularly larger than those of other characteristic flow modes. The measured local and average Nusselt numbers of the cell flow are also particularly higher than those of other characteristic flow modes. The distinctive flow properties are responsible for the drastic increase of the heat transfer due to the enhancement of the momentum, heat, and mass exchanges within the flow field induced by the large values of the vorticity and turbulence intensity. Although the thru flow mode is conventionally used in the ribbed channel for industrial application, the cell flow could become the choice if the heat transfer rate, instead of the pressure loss, is the primary concern.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Andrew J. Onstad ◽  
Christopher J. Elkins ◽  
Robert J. Moffat ◽  
John K. Eaton

Jet impingement cooling is widely used due to the very high heat transfer coefficients that are attainable. Both single and multiple jet systems can be used, however, multiple jet systems offer higher and more uniform heat transfer. A staggered array of 8.46 mm diameter impingement jets with jet-to-jet spacing of 2.34 D was examined where the spent fluid is extracted through one of six 7.36 mm diameter extraction holes regularly located around each jet. The array had an extraction area ratio (Ae/Ajet) of 2.23 locally and was tested with a jet-to-target spacing (H/D) of 1.18 jet diameters. Magnetic resonance velocimetry was used to both quantify and visualize the three dimensional flow field inside the cooling cavity at jet Reynolds numbers of 2600 and 5300. The spatially averaged velocity measurements showed a smooth transition is possible from the impingement jet to the extraction hole without the presence of large vortical structures. Mean Nusselt number measurements were made over a jet Reynolds number range of 2000–10,000. Nusselt numbers near 75 were measured at the highest Reynolds number with an estimated uncertainty of 7%. Large mass flow rate per unit heat transfer area ratios were required because of the small jet-to-jet spacing.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Tong-Miin Liou ◽  
Shyy Woei Chang ◽  
Chun-Chang Yang ◽  
Yi-An Lan

An experimental study was performed to measure the detailed heat transfer distributions, Fanning friction factors (f), and thermal performance factors (TPF) of a radially rotating twin-pass parallelogram channel. Laboratory scale full field Nusselt number (Nu) distributions over leading endwall (Leading-E), and trailing endwall (Trailing-E) of the rotating channel are measured at the test conditions of 5000 < Re < 20,000, 0 < Ro < 0.3 and 0.028 < Δρ/ρ < 0.12. A selection of Nu data illustrates the individual and interactive impacts of Re, Ro, and buoyancy (Bu) numbers on local and area-averaged heat transfer properties. Without the additional flow complexities induced by the turbulators, the degrees of Bu impacts are significantly amplified from those developed in an enhanced rotating ribbed channel. Relative to the similar rotating square twin-pass channel, the heat transfer recovery over the stable wall proceeds at the lower Ro for present rotating parallelogram channel. Accompanying with the improved heat transfer performances from the square-channel counterparts, the f values are raised. With a set of f correlations generated using the f data collected from the Leading-S and Trailing-S at isothermal conditions; the TPF values at various rotating conditions were evaluated. The heat transfer correlations that determine the area-averaged Nusselt numbers over the inlet and outlet legs and over the turning region are generated. The area-averaged Nu, f factors, and TPF determined from the present rotating parallelogram channel are compared with those reported for the rotating twin-pass channels to determine the comparatively thermal performances of the parallelogram rotating channel for turbine rotor blade cooling.


Author(s):  
Tong-Miin Liou ◽  
Shyy Woei Chang ◽  
Chun-Chang Yang ◽  
Yi-An Lan

An experimental study was performed to measure the detailed heat transfer distributions, Fanning friction factors (f) and thermal performance factors (TPF) of a radially rotating twin-pass parallelogram channel. Laboratory scale full field Nusselt number (Nu) distributions over Leading Endwall (Leading-E) and Trailing Endwall (Trailing-E) of the rotating channel are measured at the test conditions of 5000 < Re < 20000, 0 < Ro < 0.3 and 0.028 < Δρ/ρ < 0.12. A selection of Nu data illustrates the individual and interactive impacts of Re, Ro and buoyancy (Bu) numbers on local and area-averaged heat transfer properties. Without the additional flow complexities induced by the turbulators, the degrees of Bu impacts are significantly amplified from those developed in an enhanced rotating ribbed channel. Relative to the similar rotating square twin-pass channel, the heat transfer recovery over the stable wall proceeds at the lower Ro for present rotating parallelogram channel. Accompanying with the improved heat transfer performances from the square-channel counterparts, the f values are raised. With a set of f correlations generated using the f data collected from the Leading Sidewall (Leading-S) and Trailing Sidewall (Trailing-S) at isothermal conditions; the TPF values at various rotating conditions were evaluated. The heat transfer correlations that determine the area-averaged Nusselt numbers over the inlet and outlet legs and over the turning region are generated. The area-averaged Nu, f factors and TPF determined from the present rotating parallelogram channel are compared with those reported for the rotating twin-pass channels to determine the comparatively thermal performances of the parallelogram rotating channel for turbine rotor blade cooling.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Andallib Tariq ◽  
Naveen Sharma ◽  
Manish Mishra

This work is an experimental study of detailed aerothermal characteristics inside a duct carrying an array of solid and permeable pentagonal ribs with a parallel and inclined slit, mounted on the bottom wall. The rib height-to-hydraulic diameter ratio, the rib pitch-to-height ratio, and the open area ratio fixed during experiments are 0.125%, 12%, and 25%, respectively. The heat transfer coefficient (HTC) distribution is mapped by using transient liquid crystal thermography (LCT), while the detailed flow measurements are performed by using particle image velocimetry (PIV). The primary focus of the study is to assess the influence of inter-rib region flow characteristics on the local heat transfer fields. The heat transfer and friction factor measurements are evaluated along with thermohydraulic performances at different Reynolds numbers, i.e., 26,160, 42,500, and 58,850. Performance indexes show that the pentagonal ribs with the inclined-slit are superior to other configurations from both perspective. Aerothermal features within inter-rib region were elucidated by analyzing the time-averaged streamlines, mean velocities, fluctuation statistics, vorticity, turbulent kinetic energy (TKE) budget terms, and local and spanwise-averaged Nusselt number as well as augmentation Nusselt numbers. Critical flow structures and coherent structures were identified, which illustrate about different flow dynamic processes. The flow emanating out of the inclined-slit pentagonal rib significantly affects the magnitude of streamwise velocity, fluctuation statistics, vorticity, and TKE budget terms at the downstream corner, whereas the dissipation term of TKE budget correlates well with the surface heat transfer distribution.


1993 ◽  
Vol 115 (3) ◽  
pp. 560-567 ◽  
Author(s):  
N. Zhang ◽  
J. Chiou ◽  
S. Fann ◽  
W.-J. Yang

Experiments are performed to determine the local heat transfer performance in a rotating serpentine passage with rib-roughened surfaces. The ribs are placed on the trailing and leading walls in a corresponding posited arrangement with an angle of attack of 90 deg. The rib height-to-hydraulic diameter ratio, e/Dh, is 0.0787 and the rib pitch-to-height ratio, s/e, is 11. The throughflow Reynolds number is varied, typically at 23,000, 47,000, and 70,000 in the passage both at rest and in rotation. In the rotation cases, the rotation number is varied from 0.023 to 0.0594. Results for the rib-roughened serpentine passages are compared with those of smooth ones in the literature. Comparison is also made on results for the rib-roughened passages between the stationary and rotating cases. It is disclosed that a significant enhancement is achieved in the heat transfer in both the stationary and rotating cases resulting from an installation of the ribs. Both the rotation and Rayleigh numbers play important roles in the heat transfer performance on both the trailing and leading walls. Although the Reynolds number strongly influences the Nusselt numbers in the rib-roughened passage of both the stationary and rotating cases, Nuo and Nu, respectively, it has little effect on their ratio Nu/Nuo.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
B. Glezer

Heat transfer and fluid mechanics results are given for a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. The Reynolds numbers investigated, based on inlet duct characteristics, include values which are the same as in the application (18000–19400). The ratio of absolute air temperature between the inlet and wall of the swirl chamber ranges from 0.62 to 0.86 for the heat transfer measurements. Spatial variations of surface Nusselt numbers along swirl chamber surfaces are measured using infrared thermography in conjunction with thermocouples, energy balances, digital image processing, and in situ calibration procedures. The structure and streamwise development of arrays of Görtler vortex pairs, which develop along concave surfaces, are apparent from flow visualizations. Overall swirl chamber structure is also described from time-averaged surveys of the circumferential component of velocity, total pressure, static pressure, and the circumferential component of vorticity. Important variations of surface Nusselt numbers and time-averaged flow characteristics are present due to arrays of Görtler vortex pairs, especially near each of the two inlets, where Nusselt numbers are highest. Nusselt numbers then decrease and become more spatially uniform along the interior surface of the chamber as the flows advect away from each inlet.


1998 ◽  
Vol 120 (4) ◽  
pp. 991-998 ◽  
Author(s):  
L. B. Wang ◽  
G. D. Jiang ◽  
W. Q. Tao ◽  
H. Ozoe

The periodically fully developed laminar heat transfer and pressure drop of arrays with nonuniform plate length aligned at an angle (25 deg) to air direction have been investigated by numerical analysis in the Reynolds number range of 50–1700. The body-fitted coordinate system generated by the multisurface method was adopted to retain the corresponding periodic relation of the lines in physical and computational domains. The computations were carried out just in one cycle. Numerical results show that both the heat transfer and pressure drop increase with the increase in the length ratio of the long plate to the short plate, and decrease with the decrease in the ratio of transverse pitch to the longitudinal pitch. The numerical results exhibit good agreement with available experimental data.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Shyy Woei Chang ◽  
Tong-Miin Liou ◽  
Tsun Lirng Yang ◽  
Guo Fang Hong

Endwall heat transfer measurements for a radially rotating rectangular pin-fin channel with the width-to-height ratio (aspect ratio) of 8 are performed at the parametric conditions of 5000≤Re≤20,000, 0≤Ro≤1.4, and 0.1≤Δρ/ρ≤0.21. Centerline heat transfer levels along the leading and trailing endwalls of the rotating pin-fin channel are, respectively, raised to 1.77–3.72 and 3.06–5.2 times of the Dittus–Boelter values. No previous attempt has examined the heat transfer performances for the pin-fin channel at such high rotation numbers. A selection of experimental data illustrates the individual and interactive Re, Ro, and buoyancy number (Bu) effects on heat transfer. Spanwise heat transfer variations between two adjoining pin rows are detected with the averaged Nusselt numbers (Nu) determined. A set of empirical equations that calculates Nu values over leading and trailing endwalls in the developed flow region is derived to correlate all the heat transfer data generated by this study and permits the evaluation of interactive and individual effects of Re, Ro, and Bu on Nu. With the aid of the Nu correlations derived, the operating conditions with the worst heat transfer scenarios for this rotating pin-fin channel are identified.


Sign in / Sign up

Export Citation Format

Share Document