Prediction of Flame Burning Velocity at Early Flame Development Time With High Exhaust Gas Recirculation and Spark Advance

Author(s):  
H. Lian ◽  
J. B. Martz ◽  
B. P. Maldonado ◽  
A. G. Stefanopoulou ◽  
K. Zaseck ◽  
...  

Diluting spark-ignited (SI) stoichiometric combustion engines with excess residual gas improves thermal efficiency and allows the spark to be advanced toward maximum brake torque (MBT) timing. However, flame propagation rates decrease and misfires can occur at high exhaust gas recirculation (EGR) conditions and advanced spark, limiting the maximum level of charge dilution and its benefits. The misfire limits are often determined for a specific engine from extensive experiments covering a large range of speed, torque, and actuator settings. To extend the benefits of dilute combustion while at the misfire limit, it is essential to define a parameterizable, physics-based model capable of predicting the misfire limits, with cycle to cycle varied flame burning velocity as operating conditions change based on the driver demand. A cycle-averaged model is the first step in this process. The current work describes a model of cycle-averaged laminar flame burning velocity within the early flame development period of 0–3% mass fraction burned. A flame curvature correction method is used to account for both the effect of flame stretch and ignition characteristics, in a variable volume engine system. Comparison of the predicted and the measured flame velocity was performed using a spark plug with fiber optical access. The comparison at a small set of spark and EGR settings at fixed load and speed, shows an agreement within 30% of uncertainty, while 20% uncertainty equals ± one standard deviation over 2000 cycles.

Author(s):  
H. Lian ◽  
J. B. Martz ◽  
B. P. Maldonado ◽  
A. G. Stefanopoulou ◽  
K. Zaseck ◽  
...  

Diluting Spark-Ignited (SI) stoichiometric combustion engines with excess residual gas improves thermal efficiency, and allows spark to be advanced towards Maximum Brake Torque (MBT) timing. However, flame propagation rates decrease and misfires can occur at high Exhaust Gas Recirculation (EGR) conditions and advanced spark, limiting the maximum level of charge dilution and its benefits. The misfire limits are often determined for a specific engine from extensive experiments covering a large range of speed, torque and actuator settings. To extend the benefits of dilute combustion while at the misfire limit, it is essential to define a parameterizable, physics-based model capable of predicting the misfire limits, with cycle to cycle varied flame burning velocity as operating conditions change based on driver demand. A cycle averaged model is the first step in this process. The current work describes a model of cycle averaged laminar flame burning velocity within the early flame development period of 0 to 3 percent mass fraction burned. A flame curvature correction method is used to account for both the effect of flame stretch and ignition characteristics, in a variable volume engine system. Comparison of the predicted and the measured flame velocity was performed using a spark plug with fiber optical access. The comparison at a small set of spark and EGR settings at fixed load and speed, shows an agreement within 30% of uncertainty, while 20% uncertainty equals ± one standard deviation over 2,000 cycles.


2020 ◽  
Vol 21 (10) ◽  
pp. 1819-1834
Author(s):  
Bryan P Maldonado ◽  
Nan Li ◽  
Ilya Kolmanovsky ◽  
Anna G Stefanopoulou

Cycle-to-cycle feedback control is employed to achieve optimal combustion phasing while maintaining high levels of exhaust gas recirculation by adjusting the spark advance and the exhaust gas recirculation valve position. The control development is based on a control-oriented model that captures the effects of throttle position, exhaust gas recirculation valve position, and spark timing on the combustion phasing. Under the assumption that in-cylinder pressure information is available, an adaptive extended Kalman filter approach is used to estimate the exhaust gas recirculation rate into the intake manifold based on combustion phasing measurements. The estimation algorithm is adaptive since the cycle-to-cycle combustion variability (output covariance) is not known a priori and changes with operating conditions. A linear quadratic regulator controller is designed to maintain optimal combustion phasing while maximizing exhaust gas recirculation levels during load transients coming from throttle tip-in and tip-out commands from the driver. During throttle tip-outs, however, a combination of a high exhaust gas recirculation rate and an overly advanced spark, product of the dynamic response of the system, generates a sequence of misfire events. In this work, an explicit reference governor is used as an add-on scheme to the closed-loop system in order to avoid the violation of the misfire limit. The reference governor is enhanced with model-free learning which enables it to avoid misfires after a learning phase. Experimental results are reported which illustrate the potential of the proposed control strategy for achieving an optimal combustion process during highly diluted conditions for improving fuel efficiency.


2019 ◽  
Vol 22 (1) ◽  
pp. 284-294 ◽  
Author(s):  
FCP Leach ◽  
MH Davy ◽  
MS Peckham

As the control of real driving emissions continues to increase in importance, the importance of understanding emission formation mechanisms during engine transients similarly increases. Knowledge of the NO2/NOx ratio emitted from a diesel engine is necessary, particularly for ensuring optimum performance of NOx aftertreatment systems. In this work, cycle-to-cycle NO and NOx emissions have been measured using a Cambustion CLD500, and the cyclic NO2/NOx ratio calculated as a high-speed light-duty diesel engine undergoes transient steps in load, while all other engine parameters are held constant across a wide range of operating conditions with and without exhaust gas recirculation. The results show that changes in NO and NOx, and hence NO2/NOx ratio, are instantaneous upon a step change in engine load. NO2/NOx ratios have been observed in line with previously reported results, although at the lightest engine loads and at high levels of exhaust gas recirculation, higher levels of NO2 than have been previously reported in the literature are observed.


2019 ◽  
pp. 146808741989153 ◽  
Author(s):  
Magín Lapuerta ◽  
Ángel Ramos ◽  
Sara Rubio ◽  
Carles Estévez

The new European directive for the promotion of renewable energy mandates an increase in the share of advanced and waste-based biofuels in the transport sector. In this study, an advanced glycerol-derived biofuel was used as a component of a ternary blend, denoted as o·bio®. This blend included 27.4 %v/v of fatty acid glycerol formal ester, 69.6 %v/v of fatty acid methyl ester and 3 %v/v of acetals obtained as a by-product of the fatty acid glycerol formal ester production process (which were proved to improve cold-flow properties). Finally, o·bio® was blended with diesel fuel at a content of 20 %v/v. Two operating conditions based on usual driving modes were selected, where the engine calibration could be re-optimized after the change of fuel, corresponding to vehicle velocities of 50 and 70 km/h. Since the main effect of the blend used is to reduce particulate matter emissions, exhaust gas recirculation was increased and injection was delayed, so that the initial benefits in particulate matter emissions could be re-distributed into benefits in both particulate matter and nitrogen oxides (NOx) emissions. From a combined analysis of the particulate matter–NOx trade-off and trying to limit the negative effect of delaying injection on fuel consumption, the final proposal was to set an additional 6% exhaust gas recirculation at 50 km/h and an additional 3% exhaust gas recirculation at 70 km/h, while delaying injection 2 °CA after top dead center at both vehicle operating conditions with respect to the original calibration. The use of the blend along with the optimization of the engine calibration is expected to reduce particulate matter and NOx emissions by around 50% with a vehicle speed condition of 50 km/h and to reduce particulate matter and NOx emissions by around 30% and 40% at 70 km/h with respect to diesel fuel emissions.


Author(s):  
V Pirouzpanah ◽  
R Khoshbakhti Saray

Dual-fuel engines at part loads inevitably suffer from lower thermal efficiency and higher carbon monoxide and unburned fuel emission. The present work was carried out to investigate the combustion characteristics of a dual-fuel (diesel-gas) engine at part loads, using a single-zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. The authors have developed software in which the pilot fuel is considered as a subsidiary zone and a heat source derived from two superimposedWiebe combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This quasi-two-zone combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR), and species concentration. Therefore, this paper describes an attempt to investigate the combustion phenomenon at part loads and using hot exhaust gas recirculation (EGR) to improve the above-mentioned drawbacks and problems. By employing this technique, it is found that lower percentages of EGR and allowance for its thermal and radical effects have a positive influence on performance and emission parameters of dual-fuel engines at part loads. Predicted values show good agreement with corresponding experimental values under special engine operating conditions (quarter-load, 1400 r/min). Implications are discussed in detail.


2013 ◽  
Vol 664 ◽  
pp. 926-930
Author(s):  
Wei Zhang ◽  
Xiao Dong Wang ◽  
Rui Sun ◽  
Jian Wei Sun ◽  
Wei Han

The effects of EGR operating mode on particulate morphology were investigated for a 5.79-liter diesel engine which was equipped with a turbocharged and inter-cooled air induction system, a common-rail direct fuel injection system, and an EGR system. Morphological characteristics, such as primary particle size, number concentration and aggregate particle size were investigated by a transmission electron microscope (TEM) analysis and a electrical low pressure impactor (ELPI) under engine operating conditions of 0.41 in fuel/air ratio at different exhaust gas recirculation (EGR) rate from 0~35%. The experimental results indicated that primary particle were in the range of 17.05nm~18.34nm, which increased with increased EGR rate. As EGR rate increased, aggregate particle size were measured in a narrow range from 120nm to 170nm.


Author(s):  
Michael J. Lance ◽  
Zachary G. Mills ◽  
Joshua C. Seylar ◽  
John M.E. Storey ◽  
C. Scott Sluder

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880960 ◽  
Author(s):  
Xianqing Shen ◽  
Kai Shen ◽  
Zhendong Zhang

The effects of high-pressure and low-pressure exhaust gas recirculation on engine and turbocharger performance were investigated in a turbocharged gasoline direct injection engine. Some performances, such as engine combustion, fuel consumption, intake and exhaust, and turbocharger operating conditions, were compared at wide open throttle and partial load with the high-pressure and low-pressure exhaust gas recirculation systems. The reasons for these changes are analyzed. The results showed EGR system of gasoline engine could optimize the cylinder combustion, reduce pumping mean effective pressure and lower fuel consumption. Low-pressure exhaust gas recirculation system has higher thermal efficiency than high-pressure exhaust gas recirculation, especially on partial load condition. The main reasons are as follows: more exhaust energy is used by the turbocharger with low-pressure exhaust gas recirculation system, and the lower exhaust gas temperature of engine would optimize the combustion in cylinder.


Sign in / Sign up

Export Citation Format

Share Document